Coffea cytogenetics: from the first karyotypes to the meeting with genomics

被引:3
作者
Sattler, Mariana Cansian [1 ]
de Oliveira, Stefanie Cristina [2 ]
Correa Mendonca, Maria Andreia [3 ]
Clarindo, Wellington Ronildo [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Geral, Lab Citogenet & Citometria, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Espirito Santo, Lab Citogenet & Cultura Tecidos Vegetais, Campus Alegre, BR-29500000 Alegre, ES, Brazil
[3] Inst Fed Goiano, Lab Biotecnol, Campus Rio Verde, BR-75901970 Rio Verde, MG, Brazil
关键词
Classical cytogenetics; Coffee; Cytogenomics; DNA content; Molecular cytogenetics; Plant breeding; Polyploidy; PACHYTENE CHROMOSOME MORPHOLOGY; IN-SITU HYBRIDIZATION; LEAF RUST RESISTANCE; NUCLEAR-DNA CONTENT; ARABICA L; PHYLOGENETIC-RELATIONSHIPS; SOMATIC EMBRYOGENESIS; RDNA SITES; EVOLUTION; HETEROCHROMATIN;
D O I
10.1007/s00425-022-03898-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Coffea possesses similar to 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Hibrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.
引用
收藏
页数:16
相关论文
共 102 条
[21]  
CROS J, 1994, CAFE CACAO THE, V38, P3
[22]   NUCLEAR-DNA CONTENT IN THE SUBGENUS COFFEA (RUBIACEAE) - INTELS AND INTRA-SPECIFIC VARIATION IN AFRICAN SPECIES [J].
CROS, J ;
COMBES, MC ;
CHABRILLANGE, N ;
DUPERRAY, C ;
DESANGLES, AM ;
HAMON, S .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1995, 73 (01) :14-20
[23]   Advances in Coffea Genomics [J].
De Kochko, Alexandre ;
Akaffou, Selastique ;
Andrade, Alan C. ;
Campa, Claudine ;
Crouzillat, Dominique ;
Guyot, Romain ;
Hamon, Perla ;
Ming, Ray ;
Mueller, Lukas A. ;
Poncet, Valerie ;
Tranchant-Dubreuil, Christine ;
Hamon, Serge .
ADVANCES IN BOTANICAL RESEARCH, VOL 53, 2010, 53 :23-63
[24]   Chromosomics: Bridging the Gap between Genomes and Chromosomes [J].
Deakin, Janine E. ;
Potter, Sally ;
O'Neill, Rachel ;
Ruiz-Herrera, Aurora ;
Cioffi, Marcelo B. ;
Eldridge, Mark D. B. ;
Fukui, Kichi ;
Graves, Jennifer A. Marshall ;
Griffin, Darren ;
Grutzner, Frank ;
Kratochvil, Lukas ;
Miura, Ikuo ;
Rovatsos, Michail ;
Srikulnath, Kornsorn ;
Wapstra, Erik ;
Ezaz, Tariq .
GENES, 2019, 10 (08)
[25]   A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height, and bean size [J].
Del Pilar Moncada, Maria ;
Tovar, Eduardo ;
Carlos Montoya, Juan ;
Gonzalez, Alexandra ;
Spindel, Jennifer ;
McCouch, Susan .
TREE GENETICS & GENOMES, 2016, 12 (01) :1-17
[26]   The coffee genome provides insight into the convergent evolution of caffeine biosynthesis [J].
Denoeud, France ;
Carretero-Paulet, Lorenzo ;
Dereeper, Alexis ;
Droc, Gaetan ;
Guyot, Romain ;
Pietrella, Marco ;
Zheng, Chunfang ;
Alberti, Adriana ;
Anthony, Francois ;
Aprea, Giuseppe ;
Aury, Jean-Marc ;
Bento, Pascal ;
Bernard, Maria ;
Bocs, Stephanie ;
Campa, Claudine ;
Cenci, Alberto ;
Combes, Marie-Christine ;
Crouzillat, Dominique ;
Da Silva, Corinne ;
Daddiego, Loretta ;
De Bellis, Fabien ;
Dussert, Stephane ;
Garsmeur, Olivier ;
Gayraud, Thomas ;
Guignon, Valentin ;
Jahn, Katharina ;
Jamilloux, Veronique ;
Joet, Thierry ;
Labadie, Karine ;
Lan, Tianying ;
Leclercq, Julie ;
Lepelley, Maud ;
Leroy, Thierry ;
Li, Lei-Ting ;
Librado, Pablo ;
Lopez, Loredana ;
Munoz, Adriana ;
Noel, Benjamin ;
Pallavicini, Alberto ;
Perrotta, Gaetano ;
Poncet, Valerie ;
Pot, David ;
Priyono ;
Rigoreau, Michel ;
Rouard, Mathieu ;
Rozas, Julio ;
Tranchant-Dubreuil, Christine ;
VanBuren, Robert ;
Zhang, Qiong ;
Andrade, Alan C. .
SCIENCE, 2014, 345 (6201) :1181-1184
[27]   Transition of somatic plant cells to an embryogenic state [J].
Fehér, A ;
Pasternak, TP ;
Dudits, D .
PLANT CELL TISSUE AND ORGAN CULTURE, 2003, 74 (03) :201-228
[28]  
Fontes BPD, 2003, CITOGENETICA CITOMET
[29]  
Fowler M., 1984, LAB PROCEDURES THEIR, P167
[30]  
Goncalves M., 1978, GARCIA ORTA SER EST, V5, P3