Finding a maximally correlated state: Simultaneous Schmidt decomposition of bipartite pure states

被引:21
作者
Hiroshima, T [1 ]
Hayashi, M [1 ]
机构
[1] Japan Sci & Technol Agcy, ERATO, Quantum Computat & Informat Project, Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 03期
关键词
D O I
10.1103/PhysRevA.70.030302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a bipartite mixed state of the form rho=Sigma(alpha,beta=1)(l)a(alphabeta)\psi(alpha)][psi(beta)>, where \psi(alpha)> are normalized bipartite state vectors, and matrix (a(alphabeta)) is positive semidefinite. We provide a necessary and sufficient condition for the state rho taking the form of maximally correlated states by a local unitary transformation. More precisely, we give a criterion for simultaneous Schmidt decomposability of \psi(alpha)> for alpha=1,2,...,l. Using this criterion, we can judge completely whether or not the state rho is equivalent to the maximally correlated state, in which the distillable entanglement is given by a simple formula. For generalized Bell states, this criterion is written as a simple algebraic relation between indices of the states. We also discuss the local distinguishability of the generalized Bell states that are simultaneously Schmidt decomposable.
引用
收藏
页码:030302 / 1
页数:4
相关论文
共 22 条
[1]   Asymptotic relative entropy of entanglement for orthogonally invariant states [J].
Audenaert, K ;
De Moor, B ;
Vollbrecht, KGH ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 66 (03) :323101-323111
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]  
DEVETAK I, QUANTPH0307053
[4]  
DEVETAK I, QUANTPH0306078
[5]  
EGGELING T, 2001, PHYS REV A, V63
[6]   Classical information and distillable entanglement [J].
Eisert, J ;
Felbinger, T ;
Papadopoulos, P ;
Plenio, MB ;
Wilkens, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1611-1614
[7]   Distinguishability and indistinguishability by local operations and classical communication [J].
Fan, H .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :177905-1
[8]  
GHOSH S, QUANTPH0205105
[9]   NOTES ON THE FIDELITY OF SYMPLECTIC QUANTUM ERROR-CORRECTING CODES [J].
Hamada, Mitsuru .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :443-463
[10]  
HORN RA, 1985, MATRIX ANAL, P101