A linear algebraic derivation of Lorentz transformation from wave equations

被引:0
作者
Kim, Do-Hyung [1 ]
机构
[1] Dankook Univ, Coll Nat Sci, Dept Math, Cheonan Si, South Korea
关键词
Space-time; Lorentz transformation; special relativity; electromagnetic wave; Maxwell equation; wave equation; GAUGE TRANSFORMATIONS;
D O I
10.1080/09205071.2018.1448004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is shown that arbitrary dimensional Lorentz transformation can be obtained from invariance of wave equations using mathematically rigorous, linear algebraic arguments.
引用
收藏
页码:1527 / 1534
页数:8
相关论文
共 50 条
[41]   Uniform stabilization for the coupled semi-linear wave and beam equations with distributed nonlinear feedback [J].
Cavalcanti, Marcelo M. ;
Mansouri, Sabeur ;
Martinez, V. H. Gonzalez .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
[42]   Critical exponent for semi-linear wave equations with double damping terms in exterior domains [J].
Marcello D’Abbicco ;
Ryo Ikehata ;
Hiroshi Takeda .
Nonlinear Differential Equations and Applications NoDEA, 2019, 26
[43]   Non-linear Young equations in the plane and pathwise regularization by noise for the stochastic wave equation [J].
Florian Bechtold ;
Fabian A. Harang ;
Nimit Rana .
Stochastics and Partial Differential Equations: Analysis and Computations, 2024, 12 :857-897
[44]   Li-Yorke chaos of wave equations with linear boundary conditions under the weak topology [J].
Yang, Qigui ;
Zhu, Pengxian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 552 (02)
[45]   Critical exponent for semi-linear wave equations with double damping terms in exterior domains [J].
D'Abbicco, Marcello ;
Ikehata, Ryo ;
Takeda, Hiroshi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06)
[46]   Non-linear Young equations in the plane and pathwise regularization by noise for the stochastic wave equation [J].
Bechtold, Florian ;
Harang, Fabian A. ;
Rana, Nimit .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (02) :857-897
[47]   Local energy decay for linear wave equations with non-compactly supported initial data [J].
Ikehata, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (16) :1881-1892
[48]   Numerical error patterns for a scheme with Hermite interpolation for 1+1 linear wave equations [J].
Zhu, ZJ ;
Wang, XQ ;
Su, ZB .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (05) :353-361
[49]   Rigorous derivation of superposition T-matrix approach from solution of inhomogeneous wave equation [J].
Litvinov, Pavel ;
Ziegler, Klaus .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (01) :74-88
[50]   Propagation of nonlinear waves in an inhomogeneous gas-liquid medium. Derivation of wave equations in the Korteweg-de Vries approximation [J].
A. A. Lugovtsov .
Journal of Applied Mechanics and Technical Physics, 2009, 50 :327-335