Theory and Modeling of Self-Organization and Propagation of Filamentary Plasma Arrays in Microwave Breakdown at Atmospheric Pressure

被引:156
作者
Boeuf, Jean-Pierre [1 ,2 ,3 ,4 ]
Chaudhury, Bhaskar [1 ,2 ,3 ]
Zhu, Guo Qiang [1 ,2 ,3 ]
机构
[1] Univ Toulouse, F-31062 Toulouse 9, France
[2] UPS, INPT, F-31062 Toulouse, France
[3] LAPLACE, F-31062 Toulouse 9, France
[4] CNRS, F-31062 Toulouse, France
关键词
FRONTS;
D O I
10.1103/PhysRevLett.104.015002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
High power microwave breakdown at atmospheric pressure leads to the formation of filamentary plasma arrays that propagate toward the source. A two-dimensional model coupling Maxwell equations with plasma fluid equations is used to describe the formation of patterns under conditions similar to recent experiments and for a wave electric field perpendicular to the simulation domain or in the simulation domain. The calculated patterns are in excellent qualitative agreement with the experiments, with good quantitative agreement of the propagation speed of the filaments. The propagation of the plasma filaments is due to the combination of diffusion and ionization. Emphasis is put on the fact that free electron diffusion (and not ambipolar diffusion) associated with ionization is responsible for the propagation of the front.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Filamentation in argon microwave plasma at atmospheric pressure [J].
Cardoso, R. P. ;
Belmonte, T. ;
Noel, C. ;
Kosior, F. ;
Henrion, G. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[2]   Streamer propagation as a pattern formation problem: Planar fronts [J].
Ebert, U ;
vanSaarloos, W ;
Caroli, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (20) :4178-4181
[3]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99
[4]   Propagation and structure of planar streamer fronts [J].
Ebert, U ;
vanSaarloos, W ;
Caroli, C .
PHYSICAL REVIEW E, 1997, 55 (02) :1530-1549
[5]   Surface discharge in a microwave beam [J].
Esakov, Igor I. ;
Grachev, Lev P. ;
Khodataev, Kirill V. ;
Bychkov, Vladimir L. ;
Van Wie, David M. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (06) :1658-1663
[6]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[7]   Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses [J].
Hidaka, Yoshiteru ;
Choi, E. M. ;
Mastovsky, I. ;
Shapiro, M. A. ;
Sirigiri, J. R. ;
Temkin, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[8]   Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron [J].
Hidaka, Yoshiteru ;
Choi, E. M. ;
Mastovsky, I. ;
Shapiro, M. A. ;
Sirigiri, J. R. ;
Temkin, R. J. ;
Edmiston, G. F. ;
Neuber, A. A. ;
Oda, Y. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[9]  
MacDonald A., 1966, Microwave Breakdown in Gases
[10]   COMPARISON OF VARIOUS MICROWAVE BREAKDOWN PREDICTION MODELS [J].
MAYHAN, JT .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (13) :5362-&