3D Current Collectors for Lithium-Ion Batteries: A Topical Review

被引:134
|
作者
Yue, Yuan [1 ]
Liang, Hong [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
来源
SMALL METHODS | 2018年 / 2卷 / 08期
关键词
3D structures; binder-free processing; current collectors; electrochemical energy storage; hierarchical microstructure; BINDER-FREE ANODES; POSITIVE ELECTRODE MATERIALS; TITANIUM NITRIDE NANOWIRES; HIGH-PERFORMANCE; LI-ION; ENERGY-STORAGE; EPITAXIAL-GROWTH; HIGH-CAPACITY; NEGATIVE ELECTRODES; CATHODE MATERIALS;
D O I
10.1002/smtd.201800056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current collectors play important roles in enhancing the electrochemical performance of lithium-ion batteries. Currently used collectors are mostly made of aluminum or copper foils through slurry casting with binders that have not reached optimal capacity. Furthermore, extended cycles of charge and discharge induce detachment of the cast layer, resulting in damage to the structural integrity. In order to better understand the principles of the performance of and thus optimize current collectors, a critical review is conducted focusing on their structures. Through analysis of data collected from more than 50 publications, the capacity and retention as a function of current density and charge cycle, respectively, are identified. Two new terms, which are characteristic of 3D current collectors, are defined as Regime I and Regime II in the corresponding plots. Regime I refers to the maximum reversible capacity and Regime II to the maximum capacitor retention. The greater the values of those values, the greater the enhancement of capacity and retention. Using these concepts, it is predicted that carbonaceous and fibrous 3D hierarchical current collectors would be beneficial as battery collectors. The results and approach provide perspective for future design and advancement of electrochemical energy-storage devices.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries
    Xing, Jiale
    Bliznakov, Stoyan
    Bonville, Leonard
    Oljaca, Miodrag
    Maric, Radenka
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (04)
  • [42] 3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High-Sulfur-Loading Lithium-Sulfur Batteries
    Peng, Hong-Jie
    Xu, Wen-Tao
    Zhu, Lin
    Wang, Dai-Wei
    Huang, Jia-Qi
    Cheng, Xin-Bing
    Yuan, Zhe
    Wei, Fei
    Zhang, Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (35) : 6351 - 6358
  • [43] A Review on 3D Zinc Anodes for Zinc Ion Batteries
    Guo, Na
    Huo, Wenjie
    Dong, Xiaoyu
    Sun, Zhefei
    Lu, Yutao
    Wu, Xianwen
    Dai, Lei
    Wang, Ling
    Lin, Haichen
    Liu, Haodong
    Liang, Hanfeng
    He, Zhangxing
    Zhang, Qiaobao
    SMALL METHODS, 2022, 6 (09)
  • [44] Polymers in Lithium-Ion and Lithium Metal Batteries
    Li, Junheng
    Cai, Yifeng
    Wu, Haomin
    Yu, Zhiao
    Yan, Xuzhou
    Zhang, Qiuhong
    Gao, Theodore Z.
    Liu, Kai
    Jia, Xudong
    Bao, Zhenan
    ADVANCED ENERGY MATERIALS, 2021, 11 (15)
  • [45] Layered 3d Transition Metal-Based Oxides for Sodium-Ion and Lithium-Ion Batteries: Differences, Links and Beyond
    Shi, Yuansheng
    Hu, Erhai
    Sumboja, Afriyanti
    Anggraningrum, Ivandini T.
    Syahrial, Anne Zulfia
    Yan, Qingyu
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [46] Advancements in the development of nanomaterials for lithium-ion batteries: A scientometric review
    Poorshakoor, Ehsan
    Darab, Mahdi
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [47] A facile method to synthesize 3D structured Sn anode material with excellent electrochemical performance for lithium-ion batteries
    Jin, Zhou
    Ben, Liubin
    Yu, Hailong
    Zhao, Wenwu
    Huang, Xuejie
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (04) : 456 - 460
  • [48] New Lithium Salts in Electrolytes for Lithium-Ion Batteries (Review)
    Bushkova, O. V.
    Yaroslavtseva, T. V.
    Dobrovolsky, Yu. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (07) : 677 - 699
  • [49] A review of hazards associated with primary lithium and lithium-ion batteries
    Lisbona, Diego
    Snee, Timothy
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2011, 89 (06) : 434 - 442
  • [50] Toward High-Energy-Density Aqueous Lithium-Ion Batteries Using Silver Nanowires as Current Collectors
    Kong, Jingyi
    Wang, Yangyang
    Wu, Ying
    Zhang, Liang
    Gong, Min
    Lin, Xiang
    Wang, Dongrui
    MOLECULES, 2022, 27 (23):