ON THE MATCHING NUMBER AND THE INDEPENDENCE NUMBER OF A RANDOM INDUCED SUBHYPERGRAPH OF A HYPERGRAPH

被引:0
作者
Lee, Sang June [1 ]
机构
[1] Duksung Womens Univ, Dept Math, Seoul 01369, South Korea
关键词
matching number; independence number; hypergraph;
D O I
10.4134/BKMS.b170883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For r >= 2, let H be an r-uniform hypergraph with n vertices and m hyperedges. Let R be a random vertex set obtained by choosing each vertex of H independently with probability p. Let H[R] be the subhypergraph of H induced on R. We obtain an upper bound on the matching number nu(H[R]) and a lower bound on the independence number alpha(H[R]) of H[R]. First, we show that if mp(r) >= log n, then nu(H[R]) <= 2e(l)mp(r) with probability at least 1 - 1/n(l) for each positive integer l. It is best possible up to a constant factor depending only on l if m <= n/r. Next, we show that if mp(r) >= log n, then alpha(H[R]) >= np-root 3lnp log n - 2re(l)mp(r) with probability at least 1 - 3/n(l).
引用
收藏
页码:1523 / 1528
页数:6
相关论文
共 4 条
[1]   Large matchings in uniform hypergraphs and the conjectures of Erdos and Samuels [J].
Alon, Noga ;
Frank, Peter ;
Huang, Hao ;
Roedl, Vojtech ;
Rucinski, Andrzej ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (06) :1200-1215
[2]  
[Anonymous], 2017, Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis
[3]  
Erdos P., 1965, Ann. Univ. Sci. Budapest. Eotvos Sect. Math, V8, P93
[4]   The Size of a Hypergraph and its Matching Number [J].
Huang, Hao ;
Loh, Po-Shen ;
Sudakov, Benny .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (03) :442-450