A Mathematical Model to describe the herd behaviour considering group defense

被引:28
作者
de Assis, R. A. [1 ]
Pazim, R. [1 ]
Malavazi, M. C. [1 ]
Petry, P. P. da C. [2 ]
de Assis, L. M. E. [2 ]
Venturino, E. [3 ,4 ]
机构
[1] Univ Fed Mato Grosso, Inst Ciancias Nat Humanas & Socials, Av Alexandre Ferronato 1200, BR-78557267 Sinop, MT, Brazil
[2] Univ Estado Mato Grosso, Fac Ciencias Exatas & Tecnol, Av Ingas 3001, BR-78555000 Sinop, MT, Brazil
[3] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[4] INdAM Res Grp GNCS, Rome, Italy
关键词
herd behaviour; group defense; predator-prey; bifurcations;
D O I
10.2478/AMNS.2020.1.00002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model for predator-prey interactions with herd behaviour is proposed. Novelty includes a smooth transition from individual behaviour (low number of prey) to herd behaviour (large number of prey). The model is analysed using standard stability and bifurcations techniques. We prove that the system undergoes a Hopf bifurcation as we vary the parameter that represents the efficiency of predators (dependent on the predation rate, for instance), giving rise to sustained oscillations in the system. The proposed model appears to possess more realistic features than the previous approaches while being also relatively easier to analyse and understand.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 20 条
  • [1] Modeling herd behavior in population systems
    Ajraldi, Valerio
    Pittavino, Marta
    Venturino, Ezio
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2319 - 2338
  • [2] [Anonymous], 2013, Mathematical biology
  • [3] SShape effects on herd behavior in ecological interacting population models
    Bulai, Iulia Martina
    Venturino, Ezio
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 141 : 40 - 55
  • [4] Caro Tim, 2005, pXIII
  • [5] Coppex F, 2004, LECT NOTES COMPUT SC, V3039, P742
  • [6] A derivation of Holling's type I, II and III functional responses in predator-prey systems
    Dawes, J. H. P.
    Souza, M. O.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2013, 327 : 11 - 22
  • [7] de Assis Luciana Mafalda Elias, 2019, INT J APPL COMPUTATI, V5, P99, DOI [10.1007/s40819-019-0689-9, DOI 10.1007/S40819-019-0689-9]
  • [8] Revisiting the 1879 model for Evolutionary Mimicry by Fritz Muller: New mathematical approaches
    Ferreira, Wilson Castro, Jr.
    Marcon, Divane
    [J]. ECOLOGICAL COMPLEXITY, 2014, 18 : 25 - 38
  • [9] Guckenheimer J., 2013, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, V42
  • [10] Holling C. S., 1959, Canadian Entomologist, V91, P385