Jordan derivations and antiderivations on triangular matrices

被引:72
作者
Benkovic, D [1 ]
机构
[1] Univ Maribor, Maribor 2000, Slovenia
关键词
triangular matrix algebra; Jordan derivation; antiderivation;
D O I
10.1016/j.laa.2004.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define an antiderivation from an algebra A into an A-imodule M as a linear map delta : A --> M such that delta(ab) = delta(b)a + bdelta(a) for all a, b is an element of A. The main result states that every Jordan derivation from the algebra of all upper triangular matrices into its bimodule is the sum of a derivation and an antiderivation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 50 条
  • [21] Characterizations of derivations and Jordan derivations on Banach algebras
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2233 - 2239
  • [22] ON DERIVATIONS AND JORDAN DERIVATIONS THROUGH ZERO PRODUCTS
    Ghahramani, Hoger
    OPERATORS AND MATRICES, 2014, 8 (03): : 759 - 771
  • [23] Jordan Derivations and Lie Derivations on Path Algebras
    Y. Li
    F. Wei
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 79 - 92
  • [24] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Ferreira, Bruno L. M.
    Fosner, Ajda
    Moraes, Gabriela C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2779 - 2788
  • [25] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Bruno L. M. Ferreira
    Ajda Fošner
    Gabriela C. Moraes
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2779 - 2788
  • [26] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Mohammad Hossein Ahmadi Gandomani
    Mohammad Javad Mehdipour
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 189 - 204
  • [27] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Gandomani, Mohammad Hossein Ahmadi
    Mehdipour, Mohammad Javad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) : 189 - 204
  • [28] Jordan derivations of alternative rings
    Macedo Ferreira, Bruno Leonardo
    Guzzo Jr, Henrique
    Ferreira, Ruth Nascimento
    Wei, Feng
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 717 - 723
  • [29] Functional identities and Jordan σ-derivations
    Lee, Tsiu-Kwen
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (02) : 221 - 234
  • [30] JORDAN DERIVATIONS OF INCIDENCE ALGEBRAS
    Xiao, Zhankui
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) : 1357 - 1368