Jordan derivations and antiderivations on triangular matrices

被引:74
作者
Benkovic, D [1 ]
机构
[1] Univ Maribor, Maribor 2000, Slovenia
关键词
triangular matrix algebra; Jordan derivation; antiderivation;
D O I
10.1016/j.laa.2004.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define an antiderivation from an algebra A into an A-imodule M as a linear map delta : A --> M such that delta(ab) = delta(b)a + bdelta(a) for all a, b is an element of A. The main result states that every Jordan derivation from the algebra of all upper triangular matrices into its bimodule is the sum of a derivation and an antiderivation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 10 条
[1]   Jordan isomorphisms of triangular matrix algebras over a connected commutative ring [J].
Beidar, KI ;
Bresar, M ;
Chebotar, MA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) :197-201
[2]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[3]   CHARACTERIZATIONS OF DERIVATIONS ON SOME NORMED ALGEBRAS WITH INVOLUTION [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1992, 152 (02) :454-462
[4]   Linear preservers on upper triangular operator matrix algebras [J].
Cui, JL ;
Hou, JC ;
Li, BR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 336 :29-50
[5]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[6]  
Herstein I.N., 1957, P AM MATH SOC, V8, P1104, DOI [10.2307/2032688, 10.1090/S0002-9939-1957-0095864-2, DOI 10.1090/S0002-9939-1957-0095864-2]
[8]  
Molnar L., 1998, LINEAR MULTILINEAR A, V45, P189
[10]  
Tang XM, 2001, LINEAR ALGEBRA APPL, V338, P145