Jordan derivations and antiderivations on triangular matrices

被引:72
|
作者
Benkovic, D [1 ]
机构
[1] Univ Maribor, Maribor 2000, Slovenia
关键词
triangular matrix algebra; Jordan derivation; antiderivation;
D O I
10.1016/j.laa.2004.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define an antiderivation from an algebra A into an A-imodule M as a linear map delta : A --> M such that delta(ab) = delta(b)a + bdelta(a) for all a, b is an element of A. The main result states that every Jordan derivation from the algebra of all upper triangular matrices into its bimodule is the sum of a derivation and an antiderivation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 50 条
  • [1] JORDAN DERIVATIONS AND ANTIDERIVATIONS OF GENERALIZED MATRIX ALGEBRAS
    Li, Yanbo
    van Wyk, Leon
    Wei, Feng
    OPERATORS AND MATRICES, 2013, 7 (02): : 399 - 415
  • [2] Jordan derivations of triangular algebras
    Zhang, Jian-Hua
    Yu, Wei-Yan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 251 - 255
  • [3] Jordan homomorphisms on triangular matrices
    Benkovic, D
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (05): : 345 - 356
  • [4] Lie derivations on triangular matrices
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06): : 619 - 626
  • [5] A note on Jordan derivations of triangular rings
    Ajda Fošner
    Wu Jing
    Aequationes mathematicae, 2020, 94 : 277 - 285
  • [6] A note on Jordan derivations of triangular rings
    Fosner, Ajda
    Jing, Wu
    AEQUATIONES MATHEMATICAE, 2020, 94 (02) : 277 - 285
  • [7] Lie Triple Derivations on Triangular Matrices
    Benkovic, Dominik
    ALGEBRA COLLOQUIUM, 2011, 18 : 819 - 826
  • [8] Lie (Jordan) derivations of arbitrary triangular algebras
    Wang, Yu
    AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1221 - 1229
  • [9] Commuting Jordan Derivations on Triangular Rings Are Zero
    Hosseini, Amin
    Jing, Wu
    MATHEMATICAL NOTES, 2024, 115 (5-6) : 1006 - 1016
  • [10] Lie (Jordan) derivations of arbitrary triangular algebras
    Yu Wang
    Aequationes mathematicae, 2019, 93 : 1221 - 1229