Text indexing and dictionary matching with one error

被引:47
|
作者
Amir, A [1 ]
Keselman, D
Landau, GM
Lewenstein, M
Lewenstein, N
Rodeh, M
机构
[1] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
[2] Georgia Tech, Atlanta, GA USA
[3] Simons Technol, Decatur, GA 30030 USA
[4] Polytech Univ, Dept Comp & Informat Sci, Metrotech Ctr 6, Brooklyn, NY 11201 USA
[5] Univ Haifa, Dept Comp Sci, IL-31905 Haifa, Israel
[6] MATAM, Ctr Adv Technol, IBM, Res Lab Haifa, IL-31905 Haifa, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
D O I
10.1006/jagm.2000.1104
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The indexing problem is where a text is preprocessed and subsequent queries of the form "Find all occurrences of pattern P in the text" are answered in time proportional to the length of the query and the number of occurrences. In the dictionary matching problem a set of patterns is preprocessed and subsequent queries of the form "Find all occurrences of dictionary patterns in text T" are answered in time proportional to the length of the text and the number of occurrences. There exist efficient worst-case solutions for the indexing problem and the dictionary matching problem, but none that find approximate occurrences of the patterns, i.e., where the pattern is within a bound edit (or Hamming) distance from the appropriate text location. In this paper we present a uniform deterministic solution to both the indexing and the general dictionary matching problem with one error. We preprocess the data in time O(n log(2) n), where n is the text size in the indexing problem and the dictionary size in the dictionary matching problem. Our query time for the indexing problem is O(m log n log log n + tocc), where m is the query string size and tocc is the number of occurrences, Our query time for the dictionary matching problem is O(n log(3) d log log d + tocc), where n is the text size and d the dictionary size. The time bounds above apply to both bounded and unbounded alphabets, (C) 2000 Academic Press.
引用
收藏
页码:309 / 325
页数:17
相关论文
共 50 条
  • [21] Mind the Gap!: Online Dictionary Matching with One Gap
    Amir, Amihood
    Kopelowitz, Tsvi
    Levy, Avivit
    Pettie, Seth
    Porat, Ely
    Shalom, B. Riva
    ALGORITHMICA, 2019, 81 (06) : 2123 - 2157
  • [22] ONE-PASS TEXT COMPRESSION WITH A SUBWORD DICTIONARY
    JAKOBSSON, M
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1988, 39 (04): : 262 - 269
  • [23] Compressed suffix arrays and suffix trees with applications to text indexing and string matching
    Grossi, R
    Vitter, JS
    SIAM JOURNAL ON COMPUTING, 2005, 35 (02) : 378 - 407
  • [24] DICTIONARY VERSUS TEXT CORPUS, OR, HOW AND WHETHER ONE CAN PRODUCE A DICTIONARY AT ALL
    SCHENKEL, W
    ZEITSCHRIFT FUR AGYPTISCHE SPRACHE UND ALTERTUMSKUNDE, 1994, 121 (02): : 154 - 159
  • [25] A dictionary indexing approach for EBSD
    De Graef, M.
    EMAS 2019 WORKSHOP - 16TH EUROPEAN WORKSHOP ON MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS, 2020, 891
  • [26] Text indexing with errors
    Maass, MG
    Nowak, J
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2005, 3537 : 21 - 32
  • [27] Text indexing with errors
    Maass, Moritz G.
    Nowak, Johannes
    JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (04) : 662 - 681
  • [28] SEMANTIC TEXT INDEXING
    Kaleta, Zbigniew
    COMPUTER SCIENCE-AGH, 2014, 15 (01): : 19 - 34
  • [29] Text Mining for Indexing
    Gelernter, Judith
    Lesk, Michael
    JCDL 09: PROCEEDINGS OF THE 2009 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, 2009, : 467 - 467
  • [30] Indexing compressed text
    Ferragina, P
    Manzini, G
    JOURNAL OF THE ACM, 2005, 52 (04) : 552 - 581