Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions

被引:215
|
作者
Rae, J
Ashokkumar, M
Eulaerts, O
von Sonntag, C
Reisse, J
Grieser, F [1 ]
机构
[1] Univ Melbourne, Particulate Fluids Proc Ctr, Sch Chem, Melbourne, Vic 3010, Australia
[2] Free Univ Brussels, Chim Organ Lab, Brussels, Belgium
[3] Max Planck Inst Strahlenchem, D-4330 Mulheim, Germany
基金
澳大利亚研究理事会;
关键词
cavitation bubble temperature; methyl radical recombination method;
D O I
10.1016/j.ultsonch.2004.06.007
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Mean acoustic cavitation bubble temperatures have been measured in a series of aqueous solutions containing C-1-C-5 aliphatic alcohols, at 355 kHz. The method relies on the distribution of hydrocarbon product yields produced from the recombination of methyl radicals generated on the thermal decomposition of the alcohols. The mean bubble temperature was found to decrease with increasing concentration of alcohol with the effect being more pronounced the higher the molecular weight (the lower the vapour pressure) of the alcohol. It is shown that the decrease in the temperatures measured correlates very well with an increase in the surface excess of the alcohol, similar to that previously reported for the quenching of sonoluminescence in aqueous solutions containing alcohols [J. Phys. Chem. B 101 (1997) 10845; J. Phys. Chem. B 103 (1999) 9231]. The measured temperatures ranged from 4600 +/- 200 K at zero alcohol concentration to 2300 +/- 200 K at 0.5 M t-butanol. The validity of the method is discussed and it is concluded that even though a number of assumptions need to be applied the results appear to indicate that the method gives an accurate measure of the mean bubble temperature. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:325 / 329
页数:5
相关论文
empty
未找到相关数据