Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection

被引:60
作者
Liang, Sheng-Fu [1 ,2 ]
Wang, Hsu-Chuan [1 ]
Chang, Wan-Lin [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Inst Med Informat, Tainan 701, Taiwan
关键词
NEURAL-NETWORK; APPROXIMATE ENTROPY; FEATURE-EXTRACTION; WAVE DISCHARGES; CLASSIFICATION; SYSTEM; SPIKE; RATS;
D O I
10.1155/2010/853434
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Approximately 1% of the world's population has epilepsy, and 25% of epilepsy patients cannot be treated sufficiently by any available therapy. If an automatic seizure-detection system was available, it could reduce the time required by a neurologist to perform an off-line diagnosis by reviewing electroencephalogram (EEG) data. It could produce an on-line warning signal to alert healthcare professionals or to drive a treatment device such as an electrical stimulator to enhance the patient's safety and quality of life. This paper describes a systematic evaluation of current approaches to seizure detection in the literature. This evaluation was then used to suggest a reliable, practical epilepsy detection method. The combination of complexity analysis and spectrum analysis on an EEG can perform robust evaluations on the collected data. Principle component analysis (PCA) and genetic algorithms (GAs) were applied to various linear and nonlinear methods. The best linear models resulted from using all of the features without other processing. For the nonlinear models, applying PCA for feature reduction provided better results than applying GAs. The feasibility of executing the proposed methods on a personal computer for on-line processing was also demonstrated.
引用
收藏
页数:15
相关论文
共 48 条
[1]   Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks [J].
Acir, N ;
Öztura, I ;
Kuntalp, M ;
Baklan, B ;
Güzelis, C .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (01) :30-40
[2]   Automatic seizure detection in EEG using logistic regression and artificial neural network [J].
Alkan, A ;
Koklukaya, E ;
Subasi, A .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 148 (02) :167-176
[3]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[4]  
ANDRZEJAK RG, EEG TIME SERIES DOWN
[5]  
[Anonymous], 1989, SEIZURE EPILEPSY
[6]   Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats [J].
Bosnyakova, D. ;
Gabova, A. ;
Zharikova, A. ;
Gnezditski, V. ;
Kuznetsova, G. ;
van Luijtelaar, G. .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (08) :1736-1743
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   REGULARIZED DISCRIMINANT-ANALYSIS [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :165-175
[9]   Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (02) :512-518
[10]   Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) :1545-1551