Trust-region methods on Riemannian manifolds

被引:297
作者
Absil, P-A. [1 ]
Baker, C. G.
Gallivan, K. A.
机构
[1] Univ Catholique Louvain, Dept Engn Math, B-1348 Louvain, Belgium
[2] Univ Cambridge, Cambridge CB2 1RD, England
[3] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
关键词
numerical optimization on manifolds; trust-region; truncated conjugate-gradient; Steihaug-Toint; global convergence; local convergence; superlinear convergence; symmetric eigenvalue problem;
D O I
10.1007/s10208-005-0179-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A general scheme for trust-region methods on Riemannian manifolds is proposed and analyzed. Among the various approaches available to (approximately) solve the trust-region subproblems, particular attention is paid to the truncated conjugate-gradient technique. The method is illustrated on problems from numerical linear algebra.
引用
收藏
页码:303 / 330
页数:28
相关论文
共 53 条
  • [1] A truncated-CG style method for symmetric generalized eigenvalue problems
    Absil, PA
    Baker, CG
    Gallivan, KA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 274 - 285
  • [2] Absil PA, 2005, LECT NOTES COMPUT SC, V3514, P33
  • [3] Riemannian geometry of Grassmann manifolds with a view on algorithmic computation
    Absil, PA
    Mahony, R
    Sepulchre, R
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) : 199 - 220
  • [4] ABSIL PA, 2006, CONVERGENCE ANAL RIE
  • [5] Newton's method on Riemannian manifolds and a geometric model for the human spine
    Adler, RL
    Dedieu, JP
    Margulies, JY
    Martens, M
    Shub, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 359 - 390
  • [6] [Anonymous], 2004, P 16 INT S MATH THEO
  • [7] [Anonymous], 1992, RIEMANNIAN GEOMETRY
  • [8] BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
  • [9] Boothby W. M., 1975, An introduction to differentiable manifolds and Riemannian geometry
  • [10] Methods for the approximation of the matrix exponential in a Lie-algebraic setting
    Celledoni, E
    Iserles, A
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) : 463 - 488