Finite-size analysis of a continuous-variable quantum key distribution

被引:339
|
作者
Leverrier, Anthony [1 ]
Grosshans, Frederic [2 ]
Grangier, Philippe [3 ]
机构
[1] CNRS LTCI, Inst Telecom Telecom ParisTech, F-75634 Paris 13, France
[2] ICFO, E-08860 Castelldefels, Barcelona, Spain
[3] Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
关键词
ENTANGLEMENT; SECURITY;
D O I
10.1103/PhysRevA.81.062343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite-size scenario, over distances larger than 50 km.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] SINGLE-QUADRATURE CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION
    Gehring, Tobias
    Jacobsen, Christian Scheffmann
    Andersen, Ulrik Lund
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (13-14) : 1081 - 1095
  • [22] Implementation of continuous-variable quantum key distribution with discrete modulation
    Hirano, Takuya
    Ichikawa, Tsubasa
    Matsubara, Takuto
    Ono, Motoharu
    Oguri, Yusuke
    Namiki, Ryo
    Kasai, Kenta
    Matsumoto, Ryutaroh
    Tsurumaru, Toyohiro
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02):
  • [23] Wavelength attack on atmospheric continuous-variable quantum key distribution
    Tan, Xin
    Guo, Ying
    Zhang, Ling
    Huang, Jingzheng
    Shi, Jinjing
    Huang, Duan
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [24] Imperfect state preparation in continuous-variable quantum key distribution
    Liu, Wenyuan
    Wang, Xuyang
    Wang, Ning
    Du, Shanna
    Li, Yongmin
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [25] Optimal realistic attacks in continuous-variable quantum key distribution
    Hosseinidehaj, Nedasadat
    Walk, Nathan
    Ralph, Timothy C.
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [26] Parameter estimation of atmospheric continuous-variable quantum key distribution
    Chai, Geng
    Cao, Zhengwen
    Liu, Weiqi
    Wang, Shiyu
    Huang, Peng
    Zeng, Guihua
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [27] Continuous-Variable Quantum Key Distribution with Rateless Reconciliation Protocol
    Zhou, Chao
    Wang, Xiangyu
    Zhang, Yi-Chen
    Zhang, Zhiguo
    Yu, Song
    Guo, Hong
    PHYSICAL REVIEW APPLIED, 2019, 12 (05)
  • [28] Modulation leakage vulnerability in continuous-variable quantum key distribution
    Jain, Nitin
    Derkach, Ivan
    Chin, Hou-Man
    Filip, Radim
    Andersen, Ulrik L.
    Usenko, Vladyslav C.
    Gehring, Tobias
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [29] DISCRETELY MODULATED CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION WITH A NONDETERMINISTIC NOISELESS AMPLIFIER
    Fang, Jian
    Lu, Yuan
    Huang, Peng
    He, Guangqiang
    Zeng, Guihua
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (04)
  • [30] Quantum Hacking on an Integrated Continuous-Variable Quantum Key Distribution System via Power Analysis
    Zheng, Yi
    Shi, Haobin
    Pan, Wei
    Wang, Quantao
    Mao, Jiahui
    ENTROPY, 2021, 23 (02) : 1 - 11