Finite-size analysis of a continuous-variable quantum key distribution

被引:361
作者
Leverrier, Anthony [1 ]
Grosshans, Frederic [2 ]
Grangier, Philippe [3 ]
机构
[1] CNRS LTCI, Inst Telecom Telecom ParisTech, F-75634 Paris 13, France
[2] ICFO, E-08860 Castelldefels, Barcelona, Spain
[3] Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
关键词
ENTANGLEMENT; SECURITY;
D O I
10.1103/PhysRevA.81.062343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite-size scenario, over distances larger than 50 km.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
ASSCHE GV, 2004, IEEE T INFORM THEORY, V50, P394
[3]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[4]   LDPC-based Gaussian key reconciliation [J].
Bloch, Matthieu ;
Thangaraj, Andrew ;
McLaughlin, Steven W. ;
Merolla, Jean-Marc .
2006 IEEE INFORMATION THEORY WORKSHOP, 2006, :116-+
[5]   Finite-key analysis for practical implementations of quantum key distribution [J].
Cai, Raymond Y. Q. ;
Scarani, Valerio .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   Postselection Technique for Quantum Channels with Applications to Quantum Cryptography [J].
Christandl, Matthias ;
Koenig, Robert ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[7]   Field test of a continuous-variable quantum key distribution prototype [J].
Fossier, S. ;
Diamanti, E. ;
Debuisschert, T. ;
Villing, A. ;
Tualle-Brouri, R. ;
Grangier, P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[9]  
Grosshans F, 2003, QUANTUM INF COMPUT, V3, P535
[10]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241