Chronic lung allograft dysfunction phenotype and prognosis by machine learning CT analysis

被引:12
作者
McInnis, Micheal C. [1 ]
Ma, Jin [2 ]
Karur, Gauri Rani [1 ]
Houbois, Christian [1 ,3 ]
Levy, Liran [4 ]
Havlin, Jan [4 ]
Fuchs, Eyal [4 ]
Tikkanen, Jussi [4 ]
Chow, Chung-Wai [4 ,5 ]
Huszti, Ella [2 ]
Martinu, Tereza [4 ,5 ]
机构
[1] Univ Toronto, Univ Hlth Network, Dept Med Imaging, Toronto, ON, Canada
[2] Univ Toronto, Univ Hlth Network, Biostat Res Unit, Toronto, ON, Canada
[3] Univ Cologne, Dept Diagnost & Intervent Radiol, Cologne, Germany
[4] Univ Hlth Network, Toronto Lung Transplant Program, Ajmera Transplant Ctr, Toronto, ON, Canada
[5] Univ Toronto, Div Respirol, Dept Med, Toronto, ON, Canada
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
BRONCHIOLITIS OBLITERANS SYNDROME; QUANTITATIVE COMPUTED-TOMOGRAPHY; TRANSPLANTATION; VALIDATION; SURVIVAL; PATTERNS; SOCIETY; ONSET; HEART;
D O I
10.1183/13993003.01652-2021
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication compared with radiologist scoring. Methods This retrospective study included all adult first double lung transplant patients (January 2010-December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype. Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus and CLAD phenotype. Results 88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator (area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the multivariable analysis, best with PVV (hazard ratio 1.23, 95% CT 1.05-1.44; p=0.01). Conclusions Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and prognostication.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] Bronchiolitis obliterans syndrome in heart-lung transplant recipients: Diagnosis with expiratory CT
    Bankier, AA
    Van Muylem, A
    Knoop, C
    Estenne, M
    Gevenois, PA
    [J]. RADIOLOGY, 2001, 218 (02) : 533 - 539
  • [2] Machine Learning Algorithms Utilizing Quantitative CT Features May Predict Eventual Onset of Bronchiolitis Obliterans Syndrome After Lung Transplantation
    Barbosa, Eduardo J. Mortani, Jr.
    Lanclus, Maarten
    Vos, Wim
    Van Holsbeke, Cedric
    De Backer, William
    De Backer, Jan
    Lee, James
    [J]. ACADEMIC RADIOLOGY, 2018, 25 (09) : 1201 - 1212
  • [3] Quantitative Computed Tomography Imaging of Interstitial Lung Diseases
    Bartholmai, Brian J.
    Raghunath, Sushravya
    Karwoski, Ronald A.
    Moua, Teng
    Rajagopalan, Srinivasan
    Maldonado, Fabien
    Decker, Paul A.
    Robb, Richard A.
    [J]. JOURNAL OF THORACIC IMAGING, 2013, 28 (05) : 298 - 307
  • [4] Parametric Response Mapping as an Imaging Biomarker in Lung Transplant Recipients
    Belloli, Elizabeth A.
    Degtiar, Irina
    Wang, Xin
    Yanik, Gregory A.
    Stuckey, Linda J.
    Verleden, Stijn E.
    Kazerooni, Ella A.
    Ross, Brian D.
    Murray, Susan
    Galban, Craig J.
    Lama, Vibha N.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195 (07) : 942 - 952
  • [5] The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult lung and heart-lung transplantation Report-2019; Focus theme: Donor and recipient size match
    Chambers, Daniel C.
    Cherikh, Wida S.
    Harhay, Michael O.
    Hayes, Don, Jr.
    Hsich, Eileen
    Khush, Kiran K.
    Meiser, Bruno
    Potena, Luciano
    Rossano, Joseph W.
    Toll, Alice E.
    Singh, Tajinder P.
    Sadavarte, Aparna
    Zuckermann, Andreas
    Stehlik, Josef
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2019, 38 (10) : 1042 - 1055
  • [6] CT at onset of chronic lung allograft dysfunction in lung transplant patients predicts development of the restrictive phenotype and survival
    Dettmer, Sabine
    Shin, Hoen-Oh
    Vogel-Claussen, Jens
    Westphal, Max
    Haverich, Axel
    Warnecke, Gregor
    Welte, Tobias
    Wacker, Frank
    Gottlieb, Jens
    Suhling, Hendrik
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 78 - 84
  • [7] Restrictive allograft syndrome after lung transplantation: new radiological insights
    Dubbeldam, Adriana
    Barthels, Caroline
    Coolen, Johan
    Verschakelen, Johny A.
    Verleden, Stijn E.
    Vos, Robin
    Verleden, Geert M.
    De Wever, Walter
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (07) : 2810 - 2817
  • [8] Fleischner Society:: Glossary of terms tor thoracic imaging
    Hansell, David M.
    Bankier, Alexander A.
    MacMahon, Heber
    McLoud, Theresa C.
    Mueller, Nestor L.
    Remy, Jacques
    [J]. RADIOLOGY, 2008, 246 (03) : 697 - 722
  • [9] Lung Density Analysis Using Quantitative Chest CT for Early Prediction of Chronic Lung Allograft Dysfunction
    Horie, Miho
    Levy, Liran
    Houbois, Christian
    Salazar, Pascal
    Saito, Tomohito
    Pakkal, Mini
    O'Brien, Clara
    Sajja, Shailaja
    Brock, Kristy
    Yasufuku, Kazuhiro
    Keshavjee, Shaf
    Paul, Narinder
    Martinu, Tereza
    [J]. TRANSPLANTATION, 2019, 103 (12) : 2645 - 2653
  • [10] Quantitative chest CT for subtyping chronic lung allograft dysfunction and its association with survival
    Horie, Miho
    Salazar, Pascal
    Saito, Tomohito
    Binnie, Matthew
    Brock, Kristy
    Yasufuku, Kazuhiro
    Azad, Sassan
    Keshavjee, Shaf
    Martinu, Tereza
    Paul, Narinder
    [J]. CLINICAL TRANSPLANTATION, 2018, 32 (05)