FISM: Factored Item Similarity Models for Top-N Recommender Systems

被引:0
作者
Kabbur, Santosh [1 ]
Ning, Xia [2 ]
Karypis, George [1 ]
机构
[1] Univ Minnesota, Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] NEC Labs Amer, Princeton, NJ USA
来源
19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13) | 2013年
基金
美国国家科学基金会;
关键词
recommender systems; topn; sparse data; item similarity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effectiveness of existing top-N recommendation methods decreases as the sparsity of the datasets increases. To alleviate this problem, we present an item-based method for generating top-N recommendations that learns the itemitem similarity matrix as the product of two low dimensional latent factor matrices. These matrices are learned using a structural equation modeling approach, wherein the value being estimated is not used for its own estimation. A comprehensive set of experiments on multiple datasets at three different sparsity levels indicate that the proposed methods can handle sparse datasets effectively and outperforms other state-of-the-art top-N recommendation methods. The experimental results also show that the relative performance gains compared to competing methods increase as the data gets sparser.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 2011, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
[2]  
[Anonymous], **DROPPED REF**
[3]  
[Anonymous], 2008, P 14 ACM SIGKDD INT
[4]  
[Anonymous], 1998, Online Algorithms and Stochastic Approximations
[5]  
Cremonesi P, 2010, P 4 ACM C REC SYST, P39, DOI DOI 10.1145/1864708.1864721
[6]   Item-based top-N recommendation algorithms [J].
Deshpande, M ;
Karypis, G .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :143-177
[7]  
Mooney R. J., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P195, DOI 10.1145/336597.336662
[8]  
Paterek A., 2007, P KDD CUP WORKSH, P5
[9]  
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
[10]  
Rendle S., 2009, P 25 C UNC ART INT U