Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points

被引:156
作者
Xiao, Lei [1 ]
Deng, Tianshu [2 ]
Wang, Kunkun [1 ]
Wang, Zhong [2 ]
Yi, Wei [3 ,4 ]
Xue, Peng [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
关键词
QUANTUM SUPREMACY; SPIN-RESONANCE;
D O I
10.1103/PhysRevLett.126.230402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics. A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while the transition points in between, the so-called exceptional points, give rise to a host of critical behaviors that holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of exceptional points beyond this common wisdom. These "non-Bloch exceptional points" originate from the accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework, and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.
引用
收藏
页数:12
相关论文
共 40 条
  • [11] Building logical qubits in a superconducting quantum computing system
    Gambetta, Jay M.
    Chow, Jerry M.
    Steffen, Matthias
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [12] Bulk spin-resonance quantum computation
    Gershenfeld, NA
    Chuang, IL
    [J]. SCIENCE, 1997, 275 (5298) : 350 - 356
  • [13] Grynberg G, 2010, INTRO QUANTUM OPTICS, DOI 10.1017/CBO9780511778261
  • [14] Randomized benchmarking of quantum gates
    Knill, E.
    Leibfried, D.
    Reichle, R.
    Britton, J.
    Blakestad, R. B.
    Jost, J. D.
    Langer, C.
    Ozeri, R.
    Seidelin, S.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [15] An algorithmic benchmark for quantum information processing
    Knill, E
    Laflamme, R
    Martinez, R
    Tseng, CH
    [J]. NATURE, 2000, 404 (6776) : 368 - 370
  • [16] Koller Daphne, 2009, Probabilistic Graphical Models-Principles and Techniques
  • [17] A quantum engineer's guide to superconducting qubits
    Krantz, P.
    Kjaergaard, M.
    Yan, F.
    Orlando, T. P.
    Gustavsson, S.
    Oliver, W. D.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02):
  • [18] FINITE-GROUP VELOCITY OF QUANTUM SPIN SYSTEMS
    LIEB, EH
    ROBINSON, DW
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (03) : 251 - &
  • [19] Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits
    Machnes, Shai
    Assemat, Elie
    Tannor, David
    Wilhelm, Frank K.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (15)
  • [20] Effective Hamiltonian models of the cross-resonance gate
    Magesan, Easwar
    Gambetta, Jay M.
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)