Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points

被引:156
作者
Xiao, Lei [1 ]
Deng, Tianshu [2 ]
Wang, Kunkun [1 ]
Wang, Zhong [2 ]
Yi, Wei [3 ,4 ]
Xue, Peng [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
关键词
QUANTUM SUPREMACY; SPIN-RESONANCE;
D O I
10.1103/PhysRevLett.126.230402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics. A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while the transition points in between, the so-called exceptional points, give rise to a host of critical behaviors that holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of exceptional points beyond this common wisdom. These "non-Bloch exceptional points" originate from the accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework, and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Methods for Measuring Magnetic Flux Crosstalk between Tunable Transmons
    Abrams, Deanna M.
    Didier, Nicolas
    Caldwell, Shane A.
    Johnson, Blake R.
    Ryan, Colm A.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 12 (06):
  • [2] Allen J. L., ARXIV190208056
  • [3] [Anonymous], 2005, GRADUATE TEXTS MATH
  • [4] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [5] Bounding the average gate fidelity of composite channels using the unitarity
    Carignan-Dugas, Arnaud
    Wallman, Joel J.
    Emerson, Joseph
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (05):
  • [6] Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit
    Chen, Zijun
    Kelly, Julian
    Quintana, Chris
    Barends, R.
    Campbell, B.
    Chen, Yu
    Chiaro, B.
    Dunsworth, A.
    Fowler, A. G.
    Lucero, E.
    Jeffrey, E.
    Megrant, A.
    Mutus, J.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Korotkov, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (02)
  • [7] Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits
    Chow, Jerry M.
    Corcoles, A. D.
    Gambetta, Jay M.
    Rigetti, Chad
    Johnson, B. R.
    Smolin, John A.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary B.
    Ketchen, Mark B.
    Steffen, M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [8] High-fidelity spatial and polarization addressing of 43Ca+ qubits using near-field microwave control
    Craik, D. P. L. Aude
    Linke, N. M.
    Sepiol, M. A.
    Harty, T. P.
    Goodwin, J. F.
    Ballance, C. J.
    Stacey, D. N.
    Steane, A. M.
    Lucas, D. M.
    Allcock, D. T. C.
    [J]. PHYSICAL REVIEW A, 2017, 95 (02)
  • [9] Efficient Estimation of Pauli Channels
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):
  • [10] Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator
    Gambetta, J. M.
    Motzoi, F.
    Merkel, S. T.
    Wilhelm, F. K.
    [J]. PHYSICAL REVIEW A, 2011, 83 (01):