Optimization of the transport and mechanical properties of polysiloxane/polyether hybrid polymer electrolytes

被引:12
作者
Boaretto, Nicola [1 ]
Horn, Theresa [1 ]
Popall, Michael [1 ]
Sextl, Gerhard [1 ]
机构
[1] Fraunhofer Inst Silicatforsch ISC, Neunerpl 2, D-97082 Wurzburg, Germany
关键词
Composite polymer electrolytes; Inorganic-organic hybrids; Lithium metal batteries; LITHIUM-ION BATTERIES; BLOCK-COPOLYMER ELECTROLYTES; COMPOSITE ELECTROLYTES; TRANSFERENCE NUMBERS; GEL ELECTROLYTES; METAL BATTERIES; CONDUCTIVITY; FILLERS; MEMBRANES; NANOPARTICLES;
D O I
10.1016/j.electacta.2017.04.133
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, the thermo-mechanical properties of networked, polysiloxane/polyether- based, hybrid polymer electrolytes are optimized with the aim of enabling room-temperature operation in lithium metal-polymer batteries. The structural parameters of the electrolytes (polyether chain length, cross-linking and salt concentration) are varied in order to get the best tradeoff between conductivity and mechanical stability. The optimized material has a conductivity close to 1.5.10(-4) S cm(-1) at room temperature and a shear storage modulus of 50 kPa up to 100 degrees C. The effect of TiO2 nano-particles is also studied with the results showing an overall ambiguous effect on the materials properties. Finally, one of the materials with the highest conductivity is used as electrolyte in a Li/LiFePO4 cell. This cell has good rate capability and cyclability due to the high conductivity of the electrolyte. However, the high conductivity is reached at expense of the mechanical stability and the resulting electrolyte proves to be too weak to work as an efficient barrier against lithium dendrite growth. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 50 条
[41]   Mechanical Stabilization of Solid Polymer Electrolytes through Gamma Irradiation [J].
Mindemark, Jonas ;
Sobkowiak, Adam ;
Oltean, Gabriel ;
Brandell, Daniel ;
Gustafsson, Torbjorn .
ELECTROCHIMICA ACTA, 2017, 230 :189-195
[42]   Organic-inorganic hybrid electrolytes by in-situ dispersion of silica nanospheres in polymer matrix [J].
Chaurasia, Sujeet Kumar ;
Chandra, Amita .
SOLID STATE IONICS, 2017, 307 :35-43
[43]   Temperature and concentration dependence of the ionic transport properties of poly(ethylene oxide) electrolytes [J].
Hoffman, Zach J. ;
Shah, Deep B. ;
Balsara, Nitash P. .
SOLID STATE IONICS, 2021, 370
[44]   Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer [J].
Pipertzis, Achilleas ;
Abdou, Nicole ;
Xu, Johanna ;
Asp, Leif E. ;
Martinelli, Anna ;
Swenson, Jan .
ENERGY MATERIALS, 2023, 3 (06)
[45]   Effect of Nanoparticles on Ion Transport in Polymer Electrolytes [J].
Mogurampelly, Santosh ;
Ganesan, Venkat .
MACROMOLECULES, 2015, 48 (08) :2773-2786
[46]   The mechanism of ionic transport in PAN-based solid polymer electrolytes [J].
Voigt, Nadine ;
van Wuellen, Leo .
SOLID STATE IONICS, 2012, 208 :8-16
[47]   Influence of nanoparticle surface chemistry on ion transport in polymer nanocomposite electrolytes [J].
Mogurampelly, Santosh ;
Ganesan, Venkat .
SOLID STATE IONICS, 2016, 286 :57-65
[48]   Determination of transport properties for polymer electrolytes containing LiTf and MgTf2 salts [J].
Uktamaliyev, B. I. ;
Kufian, M. Z. ;
Abdukarimov, A. A. ;
Harudin, N. ;
Mamatkarimov, O. O. ;
Abidin, Z. H. Z. ;
Osman, Z. ;
Arof, A. K. .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 763 (01) :17-27
[49]   Ion Transport Properties of Self-Assembled Polymer Electrolytes: The Role of Confinement and Interface [J].
Kim, Onnuri ;
Jo, Gyuha ;
Park, Yong Jun ;
Kim, Suhan ;
Park, Moon Jeong .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (13) :2111-2117
[50]   Methodology for precise measurement of ion transport properties of semi-solid polymer electrolytes [J].
Grill, Jonas ;
Ngulube, Qaphelani ;
Mindemark, Jonas ;
Popovic-Neuber, Jelena .
ELECTROCHIMICA ACTA, 2025, 526