共 50 条
Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell
被引:115
|作者:
Choi, Hyeju
[1
]
Park, Sojin
[1
]
Paek, Sanghyun
[1
]
Ekanayake, Piyasiri
[2
]
Nazeeruddin, Mohammad Khaja
[3
]
Ko, Jaejung
[1
]
机构:
[1] Korea Univ, Dept Adv Mat Chem, Sejong City 339700, South Korea
[2] Univ Brunei Darussalam, Fac Sci, Appl Phys Program, BE-1410 Gadong, Brunei
[3] Swiss Fed Inst Technol, Dept Chem & Chem Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
基金:
新加坡国家研究基金会;
关键词:
ORGANIC SEMICONDUCTORS;
DERIVATIVES;
DEPOSITION;
DEVICES;
D O I:
10.1039/c4ta04179h
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Two symmetrical star-shaped hole transporting materials (HTMs), i.e. FA-MeOPh and TPA-MeOPh with a fused triphenylamine or triphenylamine core and diphenylethenyl side arms were synthesized. FA-MeOPh showed a strong molar absorption coefficient and a red-shifted absorption compared with TPA-MeOPh because of its planar configuration. The power conversion efficiency (PCE) of the perovskite solar cells based on FA-MeOPh and TPA-MeOPh is about 11.86% and 10.79%, in which the efficiency of former is comparable to that (12.75%) of spiro-OMeTAD based cell. The high photocurrent (18.39 mA cm(-2)) of FA-MeOPh based solar cell relative to TPA-MeOPh based one may be attributable to the enhanced absorption in the near-IR region for mp-TiO2/CH3NH3PbI3/HTM based cell. The high mobility and low series resistance of mp-TiO2/CH3NH3PbI3/FA-MeOPh based cell led to the high fill factor (0.698) of FA-MeOPh based solar cell relative to TPA-MeOPh based one (0.627). In addition, the FA-MeOPh based cell showed a relative stability under light soaking for 250 h. The high efficiency, relative stability, synthetically simple and inexpensive materials as the HTMs hold promise to replace the expensive spiro-OMeTAD.
引用
收藏
页码:19136 / 19140
页数:5
相关论文