Focus on Spinel Li4Ti5O12 as Insertion Type Anode for High-Performance Na-Ion Batteries

被引:40
|
作者
Natarajan, Subramanian [1 ]
Subramanyan, Krishnan [1 ]
Aravindan, Vanchiappan [1 ]
机构
[1] IISER, Dept Chem, Tirupati 517507, Andhra Pradesh, India
关键词
anode; energy density; sodium storage; sodium-ion batteries; spinel Li4Ti5O12; CARBON-COATED LI4TI5O12; LI-ION; LITHIUM-ION; SODIUM STORAGE; ELECTRONIC CONDUCTIVITY; NEGATIVE ELECTRODE; HIGH-POWER; INTERCALATION; CHALLENGES; NANOSHEETS;
D O I
10.1002/smll.201904484
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) toward large-scale energy storage applications has fascinated researchers in recent years owing to the low cost, environmental friendliness, and inestimable abundance. The similar chemical and electrochemical properties of sodium and lithium make sodium an easy substitute for lithium in lithium-ion batteries. However, the main issues of limited cycle life, low energy density, and poor power density hamper the commercialization process. In the last few years, the development of electrode materials for SIBs has been dedicated to improving sodium storage capacities, high energy density, and long cycle life. The insertion type spinel Li4Ti5O12 (LTO) possesses "zero-strain" behavior that offers the best cycle life performance among all reported oxide-based anodes, displaying a capacity of 155 mAh g(-1) via a three-phase separation mechanism, and competing for future topmost high energy anode for SIBs. Recent reports offer improvement of overall electrode performance through carbon coating, doping, composites with metal oxides, and surface modification techniques, etc. Further, LTO anode with its structure and properties for SIBs is described and effective methods to improve the LTO performance are discussed in both half-cell and practical configuration, i.e., full-cell, along with future perspectives and solutions to promote its use.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li4Ti5O12 Anode and Carbonaceous Cathodes
    Akshay, Manohar
    Jyothilakshmi, Shaji
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    SMALL, 2024, 20 (15)
  • [2] Sonochemical Synthesis of Nanostructured Spinel Li4Ti5O12 Negative Insertion Material for Li-ion and Na-ion Batteries
    Ghosh, Swatilekha
    Mitra, Sagar
    Barpanda, Prabeer
    ELECTROCHIMICA ACTA, 2016, 222 : 898 - 903
  • [3] Solvent-controlled solid-electrolyte interphase layer composition of a high performance Li4Ti5O12 anode for Na-ion battery applications
    Gangaja, Binitha
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (09) : 2490 - 2498
  • [4] High performance Li4Ti5O12 material as anode for lithium-ion batteries
    Wang, Jie
    Zhao, Hailei
    Wen, Yeting
    Xie, Jingying
    Xia, Qing
    Zhang, Tianhou
    Zeng, Zhipeng
    Du, Xuefei
    ELECTROCHIMICA ACTA, 2013, 113 : 679 - 685
  • [5] Hierarchically Porous Li4Ti5O12 Anode Materials for Li- and Na-Ion Batteries: Effects of Nanoarchitectural Design and Temperature Dependence of the Rate Capability
    Hasegawa, George
    Kanamori, Kazuyoshi
    Kiyomura, Tsutomu
    Kurata, Hiroki
    Nakanishi, Kazuki
    Abe, Takeshi
    ADVANCED ENERGY MATERIALS, 2015, 5 (01)
  • [6] Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries
    Zhang, Hao
    Yang, Yang
    Xu, Hong
    Wang, Li
    Lu, Xia
    He, Xiangming
    INFOMAT, 2022, 4 (04)
  • [7] Na insertion into nanocrystalline Li4Ti5O12 spinel: An electrochemical study
    Zukalova, Marketa
    Pitna Laskova, Barbora
    Klementova, Mariana
    Kavan, Ladislav
    ELECTROCHIMICA ACTA, 2017, 245 : 497 - 503
  • [8] High-rate Li4Ti5O12/C composites as anode for lithium-ion batteries
    Zheng, Xiao-Dong
    Dong, Chen-Chu
    Huang, Bing
    Lu, Mi
    IONICS, 2013, 19 (03) : 385 - 389
  • [9] ULTRATHIN Li4Ti5O12 NANOSHEETS AS A HIGH PERFORMANCE ANODE FOR Li-ION BATTERY
    Hong, Zhensheng
    Lan, Tongbin
    Xiao, Fuyu
    Zhang, Huixing
    Wei, Mingdeng
    FUNCTIONAL MATERIALS LETTERS, 2011, 4 (04) : 389 - 393
  • [10] MoS2-Quantum-Dot-Interspersed Li4Ti5O12 Nanosheets with Enhanced Performance for Li- and Na-Ion Batteries
    Xu, Guobao
    Yang, Liwen
    Wei, Xiaolin
    Ding, Jianwen
    Zhong, Jianxin
    Chu, Paul K.
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) : 3349 - 3358