Focus on Spinel Li4Ti5O12 as Insertion Type Anode for High-Performance Na-Ion Batteries

被引:42
作者
Natarajan, Subramanian [1 ]
Subramanyan, Krishnan [1 ]
Aravindan, Vanchiappan [1 ]
机构
[1] IISER, Dept Chem, Tirupati 517507, Andhra Pradesh, India
关键词
anode; energy density; sodium storage; sodium-ion batteries; spinel Li4Ti5O12; CARBON-COATED LI4TI5O12; LI-ION; LITHIUM-ION; SODIUM STORAGE; ELECTRONIC CONDUCTIVITY; NEGATIVE ELECTRODE; HIGH-POWER; INTERCALATION; CHALLENGES; NANOSHEETS;
D O I
10.1002/smll.201904484
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) toward large-scale energy storage applications has fascinated researchers in recent years owing to the low cost, environmental friendliness, and inestimable abundance. The similar chemical and electrochemical properties of sodium and lithium make sodium an easy substitute for lithium in lithium-ion batteries. However, the main issues of limited cycle life, low energy density, and poor power density hamper the commercialization process. In the last few years, the development of electrode materials for SIBs has been dedicated to improving sodium storage capacities, high energy density, and long cycle life. The insertion type spinel Li4Ti5O12 (LTO) possesses "zero-strain" behavior that offers the best cycle life performance among all reported oxide-based anodes, displaying a capacity of 155 mAh g(-1) via a three-phase separation mechanism, and competing for future topmost high energy anode for SIBs. Recent reports offer improvement of overall electrode performance through carbon coating, doping, composites with metal oxides, and surface modification techniques, etc. Further, LTO anode with its structure and properties for SIBs is described and effective methods to improve the LTO performance are discussed in both half-cell and practical configuration, i.e., full-cell, along with future perspectives and solutions to promote its use.
引用
收藏
页数:14
相关论文
共 88 条
[1]   Practical Li-Ion Battery Assembly with One-Dimensional Active Materials [J].
Aravindan, Vanchiappan ;
Sennu, Palanichamy ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (17) :4031-4037
[2]   TiO2 polymorphs in 'rocking-chair' Li-ion batteries [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Yazami, Rachid ;
Madhavi, Srinivasan .
MATERIALS TODAY, 2015, 18 (06) :345-351
[3]   Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries [J].
Aravindan, Vanchiappan ;
Sundaramurthy, Jayaraman ;
Kumar, Palaniswamy Suresh ;
Lee, Yun-Sung ;
Ramakrishna, Seeram ;
Madhavi, Srinivasan .
CHEMICAL COMMUNICATIONS, 2015, 51 (12) :2225-2234
[4]   Carbon-Coated LiTi2(PO4)3: An Ideal Insertion Host for Lithium-Ion and Sodium-Ion Batteries [J].
Aravindan, Vanchiappan ;
Ling, Wong Chui ;
Hartung, Steffen ;
Bucher, Nicolas ;
Madhavi, Srinivasan .
CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (03) :878-882
[5]   Carbon coated LiTi2(PO4)3 as new insertion anode for aqueous Na-ion batteries [J].
Arun, Nagasubramanian ;
Aravindan, Vanchiappan ;
Ling, Wong Chui ;
Madhavi, Srinivasan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 603 :48-51
[6]   High power Na-ion capacitor with TiS2 as insertion host [J].
Chaturvedi, Apoorva ;
Hu, Peng ;
Long, Yi ;
Kloc, Christian ;
Madhavi, Srinivasan ;
Aravindan, Vanchiappan .
SCRIPTA MATERIALIA, 2019, 161 :54-57
[7]   Two Dimensional TiS2 as a Promising Insertion Anode for Na-Ion Battery [J].
Chaturvedi, Apoorva ;
Edison, Eldho ;
Arun, Nagasubramanian ;
Hu, Peng ;
Kloc, Christian ;
Aravindan, Vanchiappan ;
Madhavi, Srinivasan .
CHEMISTRYSELECT, 2018, 3 (02) :524-528
[8]   Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel [J].
Chen, Chaoji ;
Xu, Henghui ;
Zhou, Tengfei ;
Guo, Zaiping ;
Chen, Lineng ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Cheng, Shijie ;
Huang, Yunhui ;
Xie, Jia .
ADVANCED ENERGY MATERIALS, 2016, 6 (13)
[9]   Li4Ti5O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices [J].
Chen, Zhijie ;
Li, Honsen ;
Wu, Langyuan ;
Lu, Xiaoxia ;
Zhang, Xiaogang .
CHEMICAL RECORD, 2018, 18 (03) :350-380
[10]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)