Relative ranks in the monoid of endomorphisms of an independence algebra

被引:17
作者
Araujo, J. [1 ]
Mitchell, J. D.
机构
[1] Univ Aberta, R Escola Politecn 147, P-1269001 Lisbon, Portugal
[2] Univ Lisbon, Ctr Algebra, P-1699 Lisbon, Portugal
[3] Univ St Andrews, Inst Math, St Andrews KY16 9SS, Fife, Scotland
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 151卷 / 01期
关键词
independence algebras; endomorphisms; relative rank; TRANSFORMATION SEMIGROUPS; IDEMPOTENT ENDOMORPHISMS; GENERATORS; PRODUCTS; SETS;
D O I
10.1007/s00605-006-0433-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The relative ranks of the monoid of endomorphisms of a strong independence algebra of infinite rank modulo two distinguished subsets are calculated. These subsets are the group of automorphisms and the endomorphisms alpha satisfying alpha(2) = alpha. The extra generators are characterised in each case.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 14 条
[1]   On generating countable sets of endomorphisms [J].
Araújo, J ;
Mitchell, JD ;
Silva, N .
ALGEBRA UNIVERSALIS, 2003, 50 (01) :61-67
[2]   Normal semigroups of endomorphisms of proper independence algebras are idempotent generated [J].
Araújo, J .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :205-217
[3]  
Araújo J, 2002, ALGEBR COLLOQ, V9, P375
[4]   Independence algebras [J].
Cameron, PJ ;
Szabó, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :321-334
[5]  
CICHON J, 2007, IN PRESS T AM MATH S
[6]   PRODUCTS OF IDEMPOTENT ENDOMORPHISMS OF AN INDEPENDENCE ALGEBRA OF INFINITE RANK [J].
FOUNTAIN, J ;
LEWIN, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 :303-319
[7]   PRODUCTS OF IDEMPOTENT ENDOMORPHISMS OF AN INDEPENDENCE ALGEBRA OF FINITE RANK [J].
FOUNTAIN, J ;
LEWIN, A .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 :493-500
[8]   INDEPENDENCE ALGEBRAS [J].
GOULD, V .
ALGEBRA UNIVERSALIS, 1995, 33 (03) :294-318
[9]   Countable versus uncountable ranks in infinite semigroups of transformations and relations [J].
Higgins, PM ;
Howie, JM ;
Mitchell, JD ;
Ruskuc, N .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :531-544
[10]   Generators and factorisations of transformation semigroups [J].
Higgins, PM ;
Howie, JM ;
Ruskuc, N .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1355-1369