Highly parallel modular multiplication in the residue number system using sum of residues reduction

被引:10
作者
Phillips, Braden J. [1 ]
Kong, Yinan [1 ]
Lim, Zhining [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Modular multiplication; Public-key cryptography; Residue number systems; RNS;
D O I
10.1007/s00200-010-0124-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new algorithm for modular multiplication in the residue number system (RNS) is presented. Modular reduction is performed using a sum of residues. As all of the residues can be evaluated simultaneously, the algorithm permits a highly parallel implementation and is suitable for performing public-key cryptography operations with very low latency.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 11 条
[1]  
[Anonymous], COMMUN ACM
[2]  
BAJARD JC, 2001, P 15 IEEE S COMP AR, V2, P59
[3]  
FINDLAY PA, 1990, LECT NOTES COMPUTER, V435, P371
[4]  
FREKING WL, 2000, P 34 AS C SIGN SYST, V2, P1339
[5]  
Hankerson D, 2004, Guide to Elliptic Curve Cryptography
[6]  
Kawamura S, 2000, LECT NOTES COMPUT SC, V1807, P523
[7]  
KAWAMURA SI, 1988, LECT NOTES COMPUTER, V330, P245
[8]  
MONTGOMERY PL, 1985, MATH COMPUT, V44, P519, DOI 10.1090/S0025-5718-1985-0777282-X
[9]   MODULE REDUCTION IN RESIDUE NUMBER-SYSTEMS [J].
POSCH, KC ;
POSCH, R .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (05) :449-454
[10]   FAST DECIPHERMENT ALGORITHM FOR RSA PUBLIC-KEY CRYPTOSYSTEM [J].
QUISQUATER, JJ ;
COUVREUR, C .
ELECTRONICS LETTERS, 1982, 18 (21) :905-907