Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function

被引:71
|
作者
Hu, Xiangqian [1 ]
Yang, Weitao [1 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 132卷 / 05期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MOLECULAR-ORBITAL METHODS; SET MODEL CHEMISTRY; DESIGNING MOLECULES; HARTREE-FOCK; OPTIMIZATION; POTENTIALS;
D O I
10.1063/1.3304922
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on Pulay's direct inversion iterative subspace (DIIS) approach, we present a method to accelerate self-consistent field (SCF) convergence. In this method, the quadratic augmented Roothaan-Hall (ARH) energy function, proposed recently by Host and co-workers [J. Chem. Phys. 129, 124106 (2008)], is used as the object of minimization for obtaining the linear coefficients of Fock matrices within DIIS. This differs from the traditional DIIS of Pulay, which uses an object function derived from the commutator of the density and Fock matrices. Our results show that the present algorithm, abbreviated ADIIS, is more robust and efficient than the energy-DIIS (EDIIS) approach. In particular, several examples demonstrate that the combination of ADIIS and DIIS ("ADIIS+DIIS") is highly reliable and efficient in accelerating SCF convergence. (c) 2010 American Institute of Physics. [doi:10.1063/1.3304922]
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Computing the self-consistent field in Kohn-Sham density functional theory
    Woods, N. D.
    Payne, M. C.
    Hasnip, P. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (45)
  • [22] Non-Born-Oppenheimer self-consistent field calculations with cubic scaling
    Moncada, Felix
    Posada, Edwin
    Flores-Moreno, Roberto
    Reyes, Andres
    CHEMICAL PHYSICS, 2012, 400 : 103 - 107
  • [23] Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase
    VandeVondele, Joost
    Borstnik, Urban
    Hutter, Juerg
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (10) : 3565 - 3573
  • [24] Automated error control in divide-and-conquer self-consistent field calculations
    Kobayashi, Masato
    Fujimori, Toshikazu
    Taketsugu, Tetsuya
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (15) : 909 - 916
  • [25] Automatic Differentiation of the Energy within Self-consistent Tight-Binding Methods
    Gamboa, Antonio
    Rapacioli, Mathias
    Spiegelman, Fernand
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (09) : 3900 - 3907
  • [26] Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition of Atomic Potentials: Simple yet Efficient
    Lehtola, Susi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) : 1593 - 1604
  • [27] The Iterative Self-Consistent Reaction-Field Method: The Refractive Index of Pure Water
    Sylvester-Hvid, Kristian O.
    Mikkelsen, Kurt V.
    Ratner, Mark A.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (04) : 904 - 913
  • [28] The variational quantum eigensolver self-consistent field method within a polarizable embedded framework
    Kjellgren, Erik Rosendahl
    Reinholdt, Peter
    Fitzpatrick, Aaron
    Talarico, Walter N.
    Jensen, Phillip W. K.
    Sauer, Stephan P. A.
    Coriani, Sonia
    Knecht, Stefan
    Kongsted, Jacob
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (12):
  • [29] An efficient algorithm for complete active space valence bond self-consistent field calculation
    Song, Jinshuai
    Chen, Zhenhua
    Shaik, Sason
    Wu, Wei
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (01) : 38 - 48
  • [30] Self-consistent addition of an atomic charge dependent hydrogen-bonding correction function
    Foster, Michael E.
    Sohlberg, Karl
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2012, 984 : 9 - 12