Quantum Communication with Time-Bin Encoded Microwave Photons

被引:40
作者
Kurpiers, P. [1 ]
Pechal, M. [2 ,3 ]
Royer, B. [4 ,5 ]
Magnard, P. [1 ]
Walter, T. [1 ]
Heinsoo, J. [1 ]
Salathe, Y. [1 ]
Akin, A. [1 ]
Storz, S. [1 ]
Besse, J-C [1 ]
Gasparinetti, S. [1 ]
Blais, A. [4 ,5 ,6 ]
Wallraff, A. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[4] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[5] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[6] Canadian Inst Adv Res, Toronto, ON M5G 1M1, Canada
基金
欧洲研究理事会; 瑞士国家科学基金会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; REMOTE ENTANGLEMENT; STATE TRANSFER; QUBITS; TELEPORTATION;
D O I
10.1103/PhysRevApplied.12.044067
中图分类号
O59 [应用物理学];
学科分类号
摘要
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error-correction schemes or quantum repeaters. Such techniques are realized, for example, by monitoring for photon loss at the receiving end of the quantum channel while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a direct quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit quantum electrodynamics and is fully microwave controlled, making it an interesting candidate for future modular quantum-computing architectures.
引用
收藏
页数:11
相关论文
共 63 条
[1]  
Agrawal G.P., 2011, FIBER OPTIC COMMUNIC
[2]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+
[3]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[4]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[5]   Photon Temporal Modes: A Complete Framework for Quantum Information Science [J].
Brecht, B. ;
Reddy, Dileep V. ;
Silberhorn, C. ;
Raymer, M. G. .
PHYSICAL REVIEW X, 2015, 5 (04)
[6]   Pulsed energy-time enangled twin-photon source for quantum communication [J].
Brendel, J ;
Gisin, N ;
Tittel, W ;
Zbinden, H .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2594-2597
[7]  
Breuer H.-P., 2002, The Theory of Open Quantum Systems
[8]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[9]   Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions [J].
Campagne-Ibarcq, P. ;
Zalys-Geller, E. ;
Narla, A. ;
Shankar, S. ;
Reinhold, P. ;
Burkhart, L. ;
Axline, C. ;
Pfaff, W. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Devoret, M. H. .
PHYSICAL REVIEW LETTERS, 2018, 120 (20)
[10]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832