On a periodic Schrodinger equation with nonlocal superlinear part

被引:222
作者
Ackermann, N [1 ]
机构
[1] Univ Giessen, Inst Math, D-35392 Giessen, Germany
关键词
D O I
10.1007/s00209-004-0663-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Choquard-Pekar equation -Deltau+Vu=(W*u(2))u uis an element ofH(1) (R-3) and focus on the case of periodic potential V. For a large class of even functions W we show existence and multiplicity of solutions. Essentially the conditions are that 0 is not in the spectrum of the linear part -Delta+V and that W does not change sign. Our results carry over to more general nonlinear terms in arbitrary space dimension Ngreater than or equal to2.
引用
收藏
页码:423 / 443
页数:21
相关论文
共 28 条
[1]  
ACKERMANN N, CAUCHY SCHWARZ TYPE
[2]   LOCALIZED SOLUTIONS OF HARTREE-EQUATIONS FOR NARROW-BAND CRYSTALS [J].
ALBANESE, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :97-103
[3]   Symmetry breaking regime in the nonlinear Hartree equation [J].
Aschbacher, WH ;
Fröhlich, J ;
Graf, GM ;
Schnee, K ;
Troyer, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3879-3891
[4]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[5]   Use of Cereport™ (RMP-7) to increase delivery of carboplatin to gliomas:: Insight and parameters for intracarotid infusion via a single-lumen cannula [J].
Bartus, RT .
DRUG DELIVERY, 1999, 6 (01) :15-21
[6]  
BONGERS A, 1980, Z ANGEW MATH MECH, V60, pT240
[7]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[8]   On some periodic Hartree-type models for crystals [J].
Catto, I ;
Le Bris, C ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (02) :143-190
[9]  
COTIZELATI V, 1992, COMMUN PUR APPL MATH, V45, P1217
[10]  
Fröhlich J, 2000, MATH PHYS S, V21, P189