Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors

被引:28
作者
Chalermsongsak, Tara [1 ]
Hall, Evan D. [1 ]
Cole, Garrett D. [2 ,3 ]
Follman, David [2 ]
Seifert, Frank [4 ,5 ]
Arai, Koji [1 ]
Gustafson, Eric K. [1 ]
Smith, Joshua R. [6 ]
Aspelmeyer, Markus [7 ]
Adhikari, Rana X. [1 ]
机构
[1] CALTECH, LIGO Lab, MS 100-36, Pasadena, CA 91125 USA
[2] Crystalline Mirror Solut LLC, 114 E Haley,Suite G, Santa Barbara, CA 93101 USA
[3] Crystalline Mirror Solut GmbH, Parkring 10, A-1220 Vienna, Austria
[4] NIST, Joint Quantum Inst, 100 Bur Dr, Gaithersburg, MD 20899 USA
[5] Univ Maryland, 100 Bur Dr, Gaithersburg, MD 20899 USA
[6] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92831 USA
[7] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, A-1090 Vienna, Austria
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
photothermal noise; AlGaAs; laser frequency stabilization; Fabry-Perot cavities; gravitational waves; THERMAL-NOISE; CAVITY; STABILIZATION; DISSIPATION; REDUCTION; PHASE; GAAS;
D O I
10.1088/0026-1394/53/2/860
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Thermal noise is a limiting factor in many high-precision optical experiments. A search is underway for novel optical materials with reduced thermal noise. One such pair of materials, gallium arsenide and aluminum-alloyed gallium arsenide (collectively referred to as AlGaAs), shows promise for its low Brownian noise when compared to conventional materials such as silica and tantala. However, AlGaAs has the potential to produce a high level of thermo-optic noise. We have fabricated a set of AlGaAs crystalline coatings, transferred to fused silica substrates, whose layer structure has been optimized to reduce thermo-optic noise by inducing coherent cancellation of the thermoelastic and thermorefractive effects. By measuring the photothermal transfer function of these mirrors, we find evidence that this optimization has been successful.
引用
收藏
页码:860 / 868
页数:9
相关论文
共 40 条
  • [1] Adachi S., 1993, EMIS Datareviews Series
  • [2] Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities
    Alnis, J.
    Matveev, A.
    Kolachevsky, N.
    Udem, Th.
    Haensch, T. W.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [3] Photothermal transfer function of dielectric mirrors for precision measurements
    Ballmer, Stefan W.
    [J]. PHYSICAL REVIEW D, 2015, 91 (02):
  • [4] IRREVERSIBILITY AND GENERALIZED NOISE
    CALLEN, HB
    WELTON, TA
    [J]. PHYSICAL REVIEW, 1951, 83 (01): : 34 - 40
  • [5] Thermoelastic effects at low temperatures and quantum limits in displacement measurements
    Cerdonio, M
    Conti, L
    Heidmann, A
    Pinard, M
    [J]. PHYSICAL REVIEW D, 2001, 63 (08):
  • [6] Chalermsongsak T, 2014, THESIS CALTECH
  • [7] Broadband measurement of coating thermal noise in rigid Fabry-Perot cavities
    Chalermsongsak, Tara
    Seifert, Frank
    Hall, Evan D.
    Arai, Koji
    Gustafson, Eric K.
    Adhikari, Rana X.
    [J]. METROLOGIA, 2015, 52 (01) : 17 - 30
  • [8] Vibration-induced elastic deformation of Fabry-Perot cavities
    Chen, Lisheng
    Hall, John L.
    Ye, Jun
    Yang, Tao
    Zang, Erjun
    Li, Tianchu
    [J]. PHYSICAL REVIEW A, 2006, 74 (05):
  • [9] Cole GD, 2013, NAT PHOTONICS, V7, P644, DOI [10.1038/nphoton.2013.174, 10.1038/NPHOTON.2013.174]
  • [10] Cavity optomechanics with low-noise crystalline mirrors
    Cole, Garrett D.
    [J]. OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IX, 2012, 8458