High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation

被引:5
作者
Li, Jing [1 ]
Yang, Yingying [1 ]
Jiang, Yingjun [1 ]
Feng, Libo [2 ]
Guo, Boling [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Space distributed-order equation; time-fractional diffusion equation; piecewise-quadratic polynomials; finite volume method; stability and convergence; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; WAVE-EQUATION; MESHLESS METHOD; ELEMENT-METHOD; VOLUME METHOD; SCHEME;
D O I
10.1007/s10473-021-0311-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation. First, we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives. Second, based on the piecewise-quadratic polynomials, we construct the nodal basis functions, and then discretize the multi-term fractional equation by the finite volume method. For the time-fractional derivative, the finite difference method is used. Finally, the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(sigma(2) + tau(2-beta) + h(3)), where tau and h are the time step size and the space step size, respectively. A numerical example is presented to verify the effectiveness of the proposed method.
引用
收藏
页码:801 / 826
页数:26
相关论文
共 44 条
[2]   An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
NUMERICAL ALGORITHMS, 2017, 75 (01) :173-211
[3]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[4]  
Caputo M., 1995, Annali dell'Universita di Ferrara, V41, P73, DOI [10.1007/BF02826009, DOI 10.1007/BF02826009]
[5]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[6]   Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain [J].
Chen, Hu ;
Lu, Shujuan ;
Chen, Wenping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 :84-97
[7]   A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain [J].
Fan, Wenping ;
Liu, Fawang .
APPLIED MATHEMATICS LETTERS, 2018, 77 :114-121
[8]   Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation [J].
Feng, L. B. ;
Zhuang, P. ;
Liu, F. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :52-65
[9]   A semi-linear delayed diffusion-wave system with distributed order in time [J].
Hendy, A. S. ;
De Staelen, R. H. ;
Pimenov, V. G. .
NUMERICAL ALGORITHMS, 2018, 77 (03) :885-903
[10]  
Javidi M, 2019, SEMA J