Boundary estimates for elliptic systems with L1-data

被引:33
作者
Brezis, Haim
Van Schaftingen, Jean
机构
[1] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
[3] Univ Paris 06, Lab JL Lions, F-75252 Paris 05, France
关键词
D O I
10.1007/s00526-007-0094-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain boundary estimates for the gradient of solutions to elliptic systems with Dirichlet or Neumann boundary conditions and L-1-data, under some condition on the divergence of the data. Similar boundary estimates are obtained for div-curl and Hodge systems.
引用
收藏
页码:369 / 388
页数:20
相关论文
共 11 条
[1]   New estimates for the Laplacian, the div-curl, and related Hodge systems [J].
Bourgain, J ;
Brezis, H .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) :539-543
[2]  
Bourgain J, 2007, J EUR MATH SOC, V9, P277
[3]  
BRAMBLE JH, 1967, ATTI ACCAD NAZ LIN, V42, P604
[4]   Elliptic equations with BMO coefficients in Lipschitz domains [J].
Byun, SS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) :1025-1046
[5]  
IWANIEC T, 1995, LECT NOTES U BONN
[6]   Harmonic functions and Green's integral [J].
Kellogg, OD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1912, 13 :109-132
[7]  
Lanzani L, 2005, MATH RES LETT, V12, P57
[8]  
Lions J-L., 1961, ANN SCUOLA NORM SUP, V15, P41
[9]  
Pommerenke Ch., 1992, Boundary behaviour of conformal maps, V299
[10]   Estimates for L1-vector fields [J].
Van Schaftingen, J .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) :181-186