Effect of siliconizing on the low-cycle fatigue of steel

被引:1
作者
Khisaeva, ZF [1 ]
Kuzeev, IR [1 ]
机构
[1] Ufa State Oil Tech Univ, Ufa, Russia
关键词
Silicon; Fatigue; Furnace; Carbide; Heat Treatment;
D O I
10.1023/B:MSAT.0000049820.51905.31
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The effect of siliconizing on the structure and resistance to low-cycle fatigue of steels 10Kb23N18 and 15Kb5M widely used for the production of coils of pipe furnaces is studied and compared with that for steel 09G2S. The siliconizing is conducted in a powder mixture based on SiC silicon carbide. The thickness and microhardness of the silicide layer and the distribution of elements over the thickness of a specimen are determined. The resistance to low-cycle fatigue in air tests is performed in a mode of lateral bending with rotating specimens fixed in a cantilever manner. The properties of the steels after siliconizing and after heat treatment without siliconizing are compared.
引用
收藏
页码:436 / 439
页数:4
相关论文
共 50 条
[31]   Characterisation of the piezomagnetic response to low-cycle fatigue of ferromagnetic steels [J].
Bao, Sheng ;
Gu, Yibin ;
Hu, Shengnan .
INSIGHT, 2018, 60 (07) :369-374
[32]   Initial aspects of low-cycle fatigue fracture of martensitic steels [J].
Eterashvili, T. ;
Dzigrashvili, T. ;
Vardosanidze, M. .
ADVANCES IN FRACTURE AND DAMAGE MECHANICS VI, 2007, 348-349 :385-+
[33]   Life prediction of titanium MMCs under low-cycle fatigue [J].
Xia, ZH ;
Curtin, WA .
ACTA MATERIALIA, 2001, 49 (09) :1633-1646
[34]   Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi [J].
Lu, Kaiju ;
Chauhan, Ankur ;
Walter, Mario ;
Tirunilai, Aditya Srinivasan ;
Schneider, Mike ;
Laplanche, Guillaume ;
Freudenberger, Jens ;
Kauffmann, Alexander ;
Heilmaier, Martin ;
Aktaa, Jarir .
SCRIPTA MATERIALIA, 2021, 194
[35]   Material characterization of SS 316 in low-cycle fatigue loading [J].
A. Dutta ;
S. Dhar ;
S. K. Acharyya .
Journal of Materials Science, 2010, 45 :1782-1789
[36]   Microstructural origins of cycle hardening behaviors and fracture mechanisms of 304L stainless steel during low-cycle fatigue [J].
Jiang, Wei ;
Shi, Shaojia ;
Wang, Heng ;
Wei, Kang ;
Zhao, Yonghao .
INTERNATIONAL JOURNAL OF FATIGUE, 2025, 194
[37]   Low-cycle fatigue behavior of AA2618-T61 forged disk [J].
Aghaie-Khafri, M. ;
Zargaran, A. .
MATERIALS & DESIGN, 2010, 31 (09) :4104-4109
[38]   Low-Cycle Fatigue Testing of Ni Nanowires Based on a Micro-Mechanical Device [J].
Zhang, H. ;
Jiang, C. ;
Lu, Y. .
EXPERIMENTAL MECHANICS, 2017, 57 (03) :495-500
[39]   Effect of aging treatment on low-cycle fatigue behavior of extruded Mg-8Al-0.5Zn alloys [J].
Zhu, Rong ;
Ji, Wenqing ;
Wu, Yanjun ;
Cai, Xiaotian ;
Yu, Ying .
MATERIALS & DESIGN, 2012, 41 :203-207
[40]   The effect of grain size on low-cycle fatigue behavior of Al-2024 polycrystalline alloy [J].
A. Mohamed ;
Y. El-Madhoun ;
M. N. Bassim .
Metallurgical and Materials Transactions A, 2004, 35 :2725-2728