Picard groups of derived categories

被引:9
作者
Fausk, H [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1016/S0022-4049(02)00145-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the group Pic(D.n) of isomorphism classes of invertible objects in the derived category of O-modules for a commutative unital ringed Grothendieck topos (E,O) with enough points. When the ring O-P has connected prime ideal spectrum for all points p of E we show that Pic(D,n) is naturally isomorphic to the Cartesian product of the Picard group of O-modules and the additive group of continuous functions from the space of isomorphism classes of points of E to the integers Z. Also, for a commutative unital ring R, the group Pic(D-R) is isomorphic to the Cartesian product of Pic(R) and the additive group of continuous functions from spec R to the integers Z. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 14 条
[1]  
Cartan H., 1956, HOMOLOGICAL ALGEBRA
[2]   The Picard group of equivariant stable homotopy theory [J].
Fausk, H ;
Lewis, LG ;
May, JP .
ADVANCES IN MATHEMATICS, 2001, 163 (01) :17-33
[3]  
GROTHENDIECK A, 1971, LECT NOTES MATH, V269
[4]  
GROTHENDIECK A, 1957, TOHOKU MATH J, V9, pCH5
[5]  
HARTSHOME R, 1966, LECT NOTES MATH, V20
[6]  
Hopkins M.J., 1994, TOPOLOGY REPRESENTAT, P89, DOI [10.1090/conm/158/01454, DOI 10.1090/CONM/158/01454]
[7]   Invertible spectra in the E(n)-local stable homotopy category [J].
Hovey, M ;
Sadofsky, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :284-302
[8]  
HU P, 1999, PICARD GROUP A1 STAB
[9]  
Matsumura H., 1994, CAMBRIDGE STUD ADV M, V8
[10]   Picard groups, Grothendieck rings, and Burnside rings of categories [J].
May, JP .
ADVANCES IN MATHEMATICS, 2001, 163 (01) :1-16