ON COHERENCE OF ENDOMORPHISM RINGS

被引:0
作者
Zhu, Hai-Yan [1 ]
Ding, Nan-Qing [2 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
T-U-flat module; coherent ring; endomorphism ring; INJECTIVE-MODULES; FLAT;
D O I
10.1017/S0004972709001014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and U a left R-module with S = End(U-R). The aim of this paper is to characterize when S is coherent. We first show that a left R-module F is T-U-flat if and only if Hom(R) (U, F) is a flat left S-module. This removes the unnecessary hypothesis that U is Sigma-quasiprojective from Proposition 2.7 of Gomez Pardo and Hernandez ['Coherence of endomorphism rings', Arch. Math. (Basel) 48(1) (1987), 40-52]. Then it is shown that S is a right coherent ring if and only if all direct products of T-U-flat left R-modules are T-U-flat if and only if all direct products of copies of U-R are T-U-flat. Finally, we prove that every left R-module is T-U-flat if and only if S is right coherent with wD(S) <= 2 and U-S is FP-injective.
引用
收藏
页码:186 / 194
页数:9
相关论文
共 16 条
[1]  
Anderson F. W., 1974, Rings and Categories of Modules
[2]   Endocoherent modules [J].
Angeleri-Hügel, L .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (01) :1-11
[3]  
Beligiannis A., 2007, MEMOIRS AM MATH SOC, V188
[4]  
Chase S. U., 1960, T AM MATH SOC, V97, P457, DOI 10.2307/1993382
[5]   FLAT AND PROJECTIVE CHARACTER MODULES [J].
CHEATHAM, TJ ;
STONE, DR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) :175-177
[6]   RINGS WHICH HAVE FLAT INJECTIVE MODULES [J].
COLBY, RR .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :239-252
[7]  
COLBY RR, 2004, CAMBRIDGE TRACTS MAT, V161
[8]  
Enochs E.E., 2011, RELATIVE HOMOLOGICAL
[9]   INJECTIVE AND FLAT COVERS, ENVELOPES AND RESOLVENTS [J].
ENOCHS, EE .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (03) :189-209
[10]  
Gobel R., 2006, Approximations and endomorphism algebras of modules