APPROXIMATION, MARKOV MOMENT PROBLEM AND RELATED INVERSE PROBLEMS

被引:0
作者
Olteanu, Octav [1 ]
机构
[1] Univ Politehn Bucuresti, Dept Math, Bucharest, Romania
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2016年 / 78卷 / 02期
关键词
approximation; Markov moment problem; inverse problems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give necessary and sufficient conditions for the existence of a unique solution of a multidimensional real classical Markov moment problem, in terms of quadratic forms. Next, we consider applications of a sufficient condition to solving geometrically nonlinear systems with infinite many equations and unknowns (inverse problems solved starting from the moments). Thus, one solves problems studied in the literature by some other methods. Our way of treating these problems works in several dimensions. In the end, one considers a problem not necessarily involving polynomials.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 23 条
[1]  
Akhiezer NI, 1965, U MATH MONOGRAPHS
[2]  
[Anonymous], ELEMENTS SPECTRAL TH
[3]  
[Anonymous], 1983, Expo. Math.
[4]   REMARK ON THE MULTIDIMENSIONAL MOMENT PROBLEM [J].
BERG, C ;
CHRISTENSEN, JPR ;
JENSEN, CU .
MATHEMATISCHE ANNALEN, 1979, 243 (02) :163-169
[5]   ROTATION INVARIANT MOMENT PROBLEMS [J].
BERG, C ;
THILL, M .
ACTA MATHEMATICA, 1991, 167 (3-4) :207-227
[6]   POLYNOMIALLY POSITIVE DEFINITE SEQUENCES [J].
BERG, C ;
MASERICK, PH .
MATHEMATISCHE ANNALEN, 1982, 259 (04) :487-495
[7]  
Berg C., 1984, HARMONIC ANAL SEMIGR, DOI [10.1007/978-1-4612-1128-0, DOI 10.1007/978-1-4612-1128-0]
[8]   The Heat Kernel and Green Function of the Generalized Hermite Operator, and the Abstract Cauchy Problem for the Abstract Hermite Operator [J].
Catana, Viorel .
PSEUDO-DIFFERENTIAL OPERATORS: ANALYSIS, APPLICATIONS AND COMPUTATIONS, 2011, 213 :155-171
[9]   The Heat Equation for the Generalized Hermite and the Generalized Landau Operators [J].
Catana, Viorel .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) :41-52
[10]  
Choquet G., 1962, SEMINAIRE INITIATION