The sphere packing problem in dimension 24

被引:155
作者
Cohn, Henry [1 ]
Kumar, Abhinav [2 ]
Miller, Stephen D. [3 ]
Radchenko, Danylo [4 ,5 ]
Viazovska, Maryna [6 ,7 ,8 ]
机构
[1] Microsoft Res New England, Cambridge, MA 02142 USA
[2] SUNY Stony Brook, Stony Brook, NY 11794 USA
[3] Rutgers State Univ, Piscataway, NJ USA
[4] Max Planck Inst Math, Bonn, Germany
[5] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[6] Berlin Math Sch, Berlin, Germany
[7] Humboldt Univ, Berlin, Germany
[8] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
D O I
10.4007/annals.2017.185.3.8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on Viazovska's recent solution of the sphere packing problem in eight dimensions, we prove that the Leech lattice is the densest packing of congruent spheres in twenty-four dimensions and that it is the unique optimal periodic packing. In particular, we find an optimal auxiliary function for the linear programming bounds, which is an analogue of Viazovska's function for the eight-dimensional case.
引用
收藏
页码:1017 / 1033
页数:17
相关论文
共 12 条
[1]  
[Anonymous], 1999, Grundlehren der Mathematischen Wissenschaften, DOI DOI 10.1007/978-1-4757-6568-7
[2]   New upper bounds on sphere packings I [J].
Cohn, H ;
Elkies, N .
ANNALS OF MATHEMATICS, 2003, 157 (02) :689-714
[3]  
Cohn H., 2017, arXiv:1611.01685, V64, P102
[4]  
Cohn H., 2016, ARXIV160304759
[5]   Optimality and uniqueness of the Leech lattice among lattices [J].
Cohn, Henry ;
Kumar, Abhinav .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1003-1050
[6]  
de Laat David, 2016, Nieuw Arch. Wiskd., V17, P184
[7]  
Ebeling W., 2013, ADV LECT MATH
[8]   A proof of the Kepler conjecture [J].
Hales, TC .
ANNALS OF MATHEMATICS, 2005, 162 (03) :1065-1185
[9]   A FORMAL PROOF OF THE KEPLER CONJECTURE [J].
Hales, Thomas ;
Adams, Mark ;
Bauer, Gertrud ;
Tat Dat Dang ;
Harrison, John ;
Le Truong Hoang ;
Kaliszyk, Cezary ;
Magron, Victor ;
Mclaughlin, Sean ;
Tat Thang Nguyen ;
Quang Truong Nguyen ;
Nipkow, Tobias ;
Obua, Steven ;
Pleso, Joseph ;
Rute, Jason ;
Solovyev, Alexey ;
Thi Hoai An Ta ;
Nam Trung Tran ;
Thi Diep Trieu ;
Urban, Josef ;
Vu, Ky ;
Zumkeller, Roland .
FORUM OF MATHEMATICS PI, 2017, 5
[10]  
Thue, 1892, FORHDL SKAND NATURFO, V14, P352