Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data

被引:10
作者
Liang, Han-Ying [1 ]
Peng, Liang [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
alpha-mixing; Asymptotic normality; Berry-Esseen type bound; Censored data; Conditional density; KAPLAN-MEIER ESTIMATE; NONPARAMETRIC-ESTIMATION; TIME-SERIES; CONVERGENCE; SEQUENCES; SUMS;
D O I
10.1016/j.jmva.2010.01.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we derive the asymptotic normality and a Berry-Esseen type bound for the kernel conditional density estimator proposed in Ould-Said and Cai (2005) 1261 when the censored observations with multivariate covariates form a stationary alpha-mixing sequence. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1043 / 1054
页数:12
相关论文
共 38 条
[21]   Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors [J].
Liang, Han-Ying ;
Fan, Guo-Liang .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :1-15
[22]  
LIANG HY, 2009, ANN I STAT IN PRESS
[23]   Strong convergence of sums of alpha-mixing random variables with applications to density estimation [J].
Liebscher, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 65 (01) :69-80
[24]  
Liebscher E., 2001, Statist. Decisions, V19, P9, DOI [10.1524/strm.2001.19.1.9, DOI 10.1524/STRM.2001.19.1.9]
[25]   Nonparametric regression estimation for dependent functional data: asymptotic normality [J].
Masry, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (01) :155-177
[26]   ACCURACY OF NORMAL APPROXIMATION FOR MINIMUM CONTRAST ESTIMATES [J].
MICHEL, R ;
PFANZAGL, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 18 (01) :73-&
[27]   Strong uniform consistency of nonparametric estimation of the censored conditional mode function [J].
Ould-Saïd, E ;
Cai, ZW .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) :797-806
[28]  
Petrov V.V., 1995, LIMIT THEOREMS PROBA, V4
[29]   Conditional minimum volume predictive regions for stochastic processes [J].
Polonik, W ;
Yao, QW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (450) :509-519
[30]  
Shan Chao Yang, 2006, High Energy Physics and Nuclear Physics, V30, P1163