The roots of the independence polynomial of a clawfree graph

被引:136
作者
Chudnovsky, Maria [1 ]
Seymour, Paul [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
clawfree graphs; roots; independence polynomial;
D O I
10.1016/j.jctb.2006.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The independence polynomial of a graph G is the polynomial Sigma(A) X-vertical bar A vertical bar, summed over all independent subsets A subset of V(G). We prove that if G is clawfree, then all the roots of its independence polynomial are real. This extends a theorem of Heilmann and Lieb [O.J. Heilmann, E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232], answering a question posed by Hamidoune [Y.O. Hamidonne, On the numbers of independent k-sets in a clawfree graph, J. Combin. Theory Ser. B 50 (1990) 241-244] and Stanley [R.P. Stanley, Graph colorings and related symmetric functions: Ideas and applications, Discrete Math. 193 (1998) 267-286]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:350 / 357
页数:8
相关论文
共 15 条
[1]  
[Anonymous], MATH CONTROLS SIGNAL, DOI DOI 10.1007/BF02551236
[2]  
[Anonymous], PUBL I MATH BEOGRAD
[3]   Roots of independence polynomials of well covered graphs [J].
Brown, JI ;
Dilcher, K ;
Nowakowski, RJ .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (03) :197-210
[4]   Average independence polynomials [J].
Brown, JI ;
Nowakowski, RJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :313-318
[5]   On the location of roots of independence polynomials [J].
Brown, JI ;
Hickman, CA ;
Nowakowski, RJ .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 19 (03) :273-282
[6]  
Brown JI, 2001, ARS COMBINATORIA, V58, P113
[7]   OBRESCHKOFF THEOREM REVISITED - WHAT CONVEX-SETS ARE CONTAINED IN THE SET OF HYPERBOLIC POLYNOMIALS (VOL 81, PG 269, 1992) [J].
DEDIEU, JP ;
GREGORAC, RJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 93 (01) :111-112
[8]   OBRESCHKOFF THEOREM REVISITED - WHAT CONVEX-SETS ARE CONTAINED IN THE SET OF HYPERBOLIC POLYNOMIALS [J].
DEDIEU, JP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 81 (03) :269-278
[9]   DEPENDENCE POLYNOMIALS [J].
FISHER, DC ;
SOLOW, AE .
DISCRETE MATHEMATICS, 1990, 82 (03) :251-258
[10]  
GUTMAN I, 1992, COMMUN MATH CHEM MAT, V28, P139