Presburger sets and p-minimal fields

被引:43
作者
Cluckers, R [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
model theory; Presburger arithmetic; p-minimal fields; elimination of imaginaries; Z-groups;
D O I
10.2178/jsl/1045861509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a cell decomposition theorem for Presburger sets and introduce a dimension theory for Z-groups with the Presburger structure, Using the cell decomposition theorem we obtain a full classification of Presburger sets up to definable bijection. We also exhibit a tight connection between the definable sets in an arbitrary p-minimal field and Presburger sets in its value group. We give a negative result about expansions of Presburger structures and prod e uniform elimination of imaginaries for Presburger structures within the Presburger language,
引用
收藏
页码:153 / 162
页数:10
相关论文
共 14 条
[1]   Quasi-o-minimal structures [J].
Belegradek, O ;
Peterzil, Y ;
Wagner, F .
JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) :1115-1132
[2]  
Cluckers R, 2001, J REINE ANGEW MATH, V540, P105
[3]   P-ADIC AND REAL SUBANALYTIC SETS [J].
DENEF, J ;
VANDENDRIES, L .
ANNALS OF MATHEMATICS, 1988, 128 (01) :79-138
[4]  
DENEF J, 1986, J REINE ANGEW MATH, V369, P154
[5]  
Denef J., 1985, SEMIN DELANGE PISOT, V59, P25
[6]  
Denef J, 2000, MSRI PUBLICATIONS, V39, P173
[7]   A version of o-minimality for the p-adics [J].
Haskell, D ;
MacPherson, D .
JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (04) :1075-1092
[8]  
Hodges W., 1993, MODEL THEORY, V42
[9]  
Macpherson D, 1996, ANN PURE APPL LOGIC, V79, P165, DOI 10.1016/0168-0072(95)00037-2
[10]   Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham's and Semenov's theorems [J].
Michaux, C ;
Villemaire, R .
ANNALS OF PURE AND APPLIED LOGIC, 1996, 77 (03) :251-277