CHARACTERIZATION OF FINITE p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS (t(G)=7)

被引:0
作者
Jafari, S. H. [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
关键词
Schur multiplier; nonabelian tensor square; p-Group; ODD PRIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n) and vertical bar M(G)vertical bar= p(1/2n(n-1)-t(G)), where M(G) is the Schur multiplier of G and t(G) is a nonnegative integer. The classification of such groups G is already known for t(G) <= 6. This paper extends the classification to t(G) = 7.
引用
收藏
页码:2567 / 2576
页数:10
相关论文
共 50 条
[21]   Characterization of finite -groups by their Schur multiplier [J].
Hatui, Sumana .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04)
[22]   Flatness conditions on finite p-groups [J].
Tandra, H ;
Moran, W .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) :2215-2224
[23]   On a class of finite capable p-groups [J].
Peter Schmid .
Archiv der Mathematik, 2016, 106 :301-304
[24]   The Roquette category of finite p-groups [J].
Bouc, Serge .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) :2843-2886
[25]   On a class of finite capable p-groups [J].
Schmid, Peter .
ARCHIV DER MATHEMATIK, 2016, 106 (04) :301-304
[26]   On elements of order p in powerful p-groups [J].
Héthelyi, L ;
Lévai, L .
JOURNAL OF ALGEBRA, 2003, 270 (01) :1-6
[27]   The Homological Functors of Finite P-Groups [J].
Moradipour, K. ;
Basri, A. M. A. B. .
JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (07) :30-30
[28]   Finite p-groups with a fixed-point-free automorphisms of order seven [J].
Abe, Shousaku .
HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (01) :51-66
[29]   Classification of p-groups via their 2-nilpotent multipliers [J].
Niroomand, Peymam ;
Parvizi, Mohsen .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 150 :127-136
[30]   Equality of certain automorphism groups of finite p-groups [J].
Gumber, Deepak ;
Kalra, Hemant .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (03)