CHARACTERIZATION OF FINITE p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS (t(G)=7)

被引:0
作者
Jafari, S. H. [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
来源
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY | 2017年 / 43卷 / 07期
关键词
Schur multiplier; nonabelian tensor square; p-Group; ODD PRIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n) and vertical bar M(G)vertical bar= p(1/2n(n-1)-t(G)), where M(G) is the Schur multiplier of G and t(G) is a nonnegative integer. The classification of such groups G is already known for t(G) <= 6. This paper extends the classification to t(G) = 7.
引用
收藏
页码:2567 / 2576
页数:10
相关论文
共 24 条
[1]   ON THE ORDER OF THE COMMUTATOR SUBGROUP AND THE SCHUR MULTIPLIER OF A FINITE P-GROUP [J].
BERKOVICH, YG .
JOURNAL OF ALGEBRA, 1991, 144 (02) :269-272
[2]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[3]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[4]   An effective version of the Lazard correspondence [J].
Cicalo, Serena ;
de Graaf, Willem A. ;
Vaughan-Lee, Michael .
JOURNAL OF ALGEBRA, 2012, 352 (01) :430-450
[5]   Schur multipliers and the Lazard correspondence [J].
Eick, Bettina ;
Horn, Max ;
Zandi, Seiran .
ARCHIV DER MATHEMATIK, 2012, 99 (03) :217-226
[6]   On the Schur multiplier of p-groups [J].
Ellis, G .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4173-4177
[7]   A bound on the schur multiplier of a prime-power group [J].
Ellis, G ;
Wiegold, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) :191-196
[8]   ON THE NUMBER OF AUTOMORPHISMS OF A FINITE GROUP [J].
GREEN, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 237 (1211) :574-581
[9]   On characterizing nilpotent lie algebras by their multipliers, t(L) = 3,4,5,6 [J].
Hardy, P ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3527-3539
[10]   CHARACTERIZATION OF FINITE p-GROUPS BY THEIR NON-ABELIAN TENSOR SQUARE [J].
Jafari, S. H. ;
Saeedi, F. ;
Khamseh, E. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) :1954-1963