A Weak-L p Prodi-Serrin Type Regularity Criterion for the Navier-Stokes Equations

被引:30
作者
Bosia, Stefano [1 ]
Pata, Vittorino [1 ]
Robinson, James C. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Navier-Stokes equations; weak solutions; strong solutions; blow-up; regularity criteria; weak Lebesgue spaces;
D O I
10.1007/s00021-014-0182-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give simple proofs that a weak solution u of the Navier-Stokes equations with H (1) initial data remains strong on the time interval [0, T] if it satisfies the Prodi-Serrin type condition u a L (s) (0, T;L (r,a)(Omega)) or if its L (s,a)(0, T;L (r,a)(Omega)) norm is sufficiently small, where 3 < r a parts per thousand currency sign a and (3/r) + (2/s) = 1.
引用
收藏
页码:721 / 725
页数:5
相关论文
共 9 条
[1]   Weak in Space, Log in Time Improvement of the LadyA3/4enskaja-Prodi-Serrin Criteria [J].
Bjorland, Clayton ;
Vasseur, Alexis .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (02) :259-269
[2]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[3]  
Grafakos L., 2008, Classical Fourier Analysis
[4]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[5]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[6]   ON THE REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS [J].
Pata, Vittorino .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :747-761
[7]  
Prodi G., 1959, Annali di Matematica, V48, P173, DOI [10.1007/BF02410664, /10.1007/BF02410664]
[8]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[9]   A regularity class for the Navier-Stokes equations in Lorentz spaces [J].
Sohr, Hermann .
JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) :441-467