Optimal importance sampling for Levy processes

被引:3
作者
Genin, Adrien [1 ,2 ,3 ]
Tankov, Peter [2 ,4 ]
机构
[1] OPUS Finance, Paris 7, France
[2] Univ Paris Diderot, Paris 7, France
[3] BNP Paribas, Paris, France
[4] ENSAE ParisTech, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
关键词
Levy processes; Option pricing; Variance reduction; Importance sampling; Large deviations; MONTE-CARLO-SIMULATION; LARGE DEVIATIONS; VARIANCE-GAMMA; INTEGRALS;
D O I
10.1016/j.spa.2018.12.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop importance sampling estimators for Monte Carlo pricing of European and path-dependent options in models driven by Levy processes. Using results from the theory of large deviations for processes with independent increments, we compute an explicit asymptotic approximation for the variance of the pay-off under a time-dependent Esscher-style change of measure. Minimizing this asymptotic variance using convex duality, we then obtain an importance sampling estimator of the option price. We show that our estimator is logarithmically optimal among all importance sampling estimators. Numerical tests in the variance gamma model show consistent variance reduction with a small computational overhead. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 46
页数:27
相关论文
共 33 条
[1]  
[Anonymous], 2013, MONTE CARLO METHODS
[2]  
[Anonymous], 2010, Large Deviations Techniques and Applications
[3]  
[Anonymous], 2004, Financial modelling with jump processes
[4]  
[Anonymous], 2013, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1016/j.jcp.2006.05.030
[5]   Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance gamma model [J].
Avramidis, Athanassios N. ;
L'Ecuyer, Pierre .
MANAGEMENT SCIENCE, 2006, 52 (12) :1930-1944
[6]  
Barndorff-Nielsen O.E., 1998, Finance and stochastics, V2, P41, DOI [DOI 10.1007/S007800050032, 10.1007/s007800050032]
[7]   FUNCTIONALS DEFINED ON MEASURES AND APPLICATIONS TO NON EQUI-UNIFORMLY ELLIPTIC PROBLEMS [J].
BUTTAZZO, G ;
FREDDI, L .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 159 :133-149
[8]   From local volatility to local Levy models [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
QUANTITATIVE FINANCE, 2004, 4 (05) :581-588
[9]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332
[10]  
Carr P., 1998, J COMPUT FINANC, V2, P61, DOI [https://doi.org/10.21314/JCF.1999.043, DOI 10.21314/JCF.1999.043]