Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling

被引:15
作者
Turek, Daniel [1 ]
de Valpine, Perry [2 ]
Paciorek, Christopher J. [3 ]
Anderson-Bergman, Clifford [1 ]
机构
[1] Univ Calif Berkeley, 493 Evans Hall, Berkeley, CA 94704 USA
[2] Univ Calif Berkeley, 201 Wellman Hall, Berkeley, CA 94704 USA
[3] Univ Calif Berkeley, 495 Evans Hall, Berkeley, CA 94704 USA
来源
BAYESIAN ANALYSIS | 2017年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
MCMC; Metropolis-Hastings; block sampling; integrated autocorrelation time; mixing; NIMBLE; CONVERGENCE; HASTINGS; LIKELIHOOD;
D O I
10.1214/16-BA1008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Markov chain Monte Carlo (MCMC) sampling is an important and commonly used tool for the analysis of hierarchical models. Nevertheless, practitioners generally have two options for MCMC: utilize existing software that generates a black-box "one size fits all" algorithm, or the challenging (and time consuming) task of implementing a problem-specific MCMC algorithm. Either choice may result in inefficient sampling, and hence researchers have become accustomed to MCMC runtimes on the order of days (or longer) for large models. We propose an automated procedure to determine an efficient MCMC block-sampling algorithm for a given model and computing platform. Our procedure dynamically determines blocks of parameters for joint sampling that result in efficient MCMC sampling of the entire model. We test this procedure using a diverse suite of example models, and observe non-trivial improvements in MCMC efficiency for many models. Our procedure is the first attempt at such, and may be generalized to a broader space of MCMC algorithms. Our results suggest that substantive improvements in MCMC efficiency may be practically realized using our automated blocking procedure, or variants thereof, which warrants additional study and application.
引用
收藏
页码:465 / 490
页数:26
相关论文
共 48 条
[1]  
[Anonymous], 1993, An introduction to the bootstrap
[2]  
[Anonymous], 2014, Stan: A C++ library for probability and sampling
[3]  
[Anonymous], 2011, HDB MARKOV CHAIN MON, DOI DOI 10.1201/B10905-6
[4]  
Banerjee S., 2003, HIERARCHICAL MODELIN, p[470, 479]
[5]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[6]   Ascent-based Monte Carlo expectation-maximization [J].
Caffo, BS ;
Jank, W ;
Jones, GL .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :235-251
[7]   Adaptive Thresholding for Sparse Covariance Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :672-684
[8]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[9]  
Durbin J., 2012, TIME SERIES ANAL STA, DOI DOI 10.1093/ACPROF:OSO/9780199641178.001.0001
[10]  
Everitt B., 2011, WILEY SERIES PROBABI