Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate

被引:178
|
作者
Huang, Gang [1 ]
Takeuchi, Yasuhiro [1 ]
Ma, Wanbiao [2 ]
Wei, Daijun [3 ]
机构
[1] Shizuoka Univ, Grad Sch Sci & Technol, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Sci & Technol Beijing, Sch Appl Sci, Dept Math & Mech, Beijing 100083, Peoples R China
[3] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
关键词
Nonlinear incidence rate; Time delay; Lyapunov functional; Global stability; INFECTIOUS-DISEASE MODELS; TIME-DELAY; VARYING INFECTIVITY; INFINITE DELAY; TRANSMISSION; REPRODUCTION; POPULATION;
D O I
10.1007/s11538-009-9487-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov-LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.
引用
收藏
页码:1192 / 1207
页数:16
相关论文
共 50 条
  • [31] Traveling waves in a delayed SIR epidemic model with nonlinear incidence
    Bai, Zhenguo
    Wu, Shi-Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 : 221 - 232
  • [32] Global stability of a discrete multigroup SIR model with nonlinear incidence rate
    Zhou, Jinling
    Yang, Yu
    Zhang, Tonghua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5370 - 5379
  • [33] Global stability of an SIR epidemic model with time delay
    Ma, WB
    Mei, S
    Takeuchi, Y
    APPLIED MATHEMATICS LETTERS, 2004, 17 (10) : 1141 - 1145
  • [34] Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay
    Kashkynbayev, Ardak
    Rihan, Fathalla A.
    MATHEMATICS, 2021, 9 (15)
  • [35] Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence
    Liu, Junli
    Peng, Baoyang
    Zhang, Tailei
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 60 - 66
  • [36] Global stability in some SEIR epidemic models
    Li, MY
    Wang, LC
    MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, METHODS, AND THEORY, 2002, 126 : 295 - 311
  • [37] Stability analysis of a fractional-order SEIR epidemic model with general incidence rate and time delay
    Ilhem, Gacem
    Kouche, Mahieddine
    Ainseba, Bedr'eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10947 - 10969
  • [39] Permanence of a delayed SIR epidemic model with general nonlinear incidence rate
    Jiang, Zhichao
    Ma, Wanbiao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 505 - 516
  • [40] Global behaviour of an SIR epidemic model with time delay
    Tchuenche, Jean M.
    Nwagwo, Alexander
    Levins, Richard
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (06) : 733 - 749