Nonlinear incidence rate;
Time delay;
Lyapunov functional;
Global stability;
INFECTIOUS-DISEASE MODELS;
TIME-DELAY;
VARYING INFECTIVITY;
INFINITE DELAY;
TRANSMISSION;
REPRODUCTION;
POPULATION;
D O I:
10.1007/s11538-009-9487-6
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov-LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.
机构:
Univ Sci & Technol Beijing, Dept Appl Math, Sch Math & Phys, Beijing 100083, Peoples R China
North China Inst Astronaut Engn, Fundamental Sci Dept, Langfang 065000, Hebei, Peoples R ChinaUniv Sci & Technol Beijing, Dept Appl Math, Sch Math & Phys, Beijing 100083, Peoples R China
Jiang, Zhichao
Ma, Wanbiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Dept Appl Math, Sch Math & Phys, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Dept Appl Math, Sch Math & Phys, Beijing 100083, Peoples R China