H2O2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions

被引:40
|
作者
Bormann, Sebastian [1 ]
van Schie, Morten M. C. H. [2 ]
De Almeida, Tiago Pedroso [2 ]
Zhang, Wuyuan [2 ]
Stoeckl, Markus [3 ]
Ulber, Roland [4 ]
Hollmann, Frank [2 ]
Holtmann, Dirk [1 ]
机构
[1] DECHEMA Res Inst, Ind Biotechnol, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[2] Delft Univ Technol, Dept Biotechnol, Biocatalysis Grp, Maasweg 9, NL-2629 HZ Delft, Netherlands
[3] DECHEMA Res Inst, Electrochem, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[4] Univ Kaiserslautern, Bioproc Engn, Gottlieb Daimler Str 49, D-67663 Kaiserslautern, Germany
关键词
biocatalysis; carbon nanotubes; electrochemistry; enzymes; hydrogen peroxide; HYDROGEN-PEROXIDE; VANADIUM CHLOROPEROXIDASE; OXIDATION; OXYGEN;
D O I
10.1002/cssc.201902326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Various enzymes utilize hydrogen peroxide as an oxidant. Such "peroxizymes" are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2O2. The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.
引用
收藏
页码:4759 / 4763
页数:5
相关论文
共 50 条
  • [31] In Situ Growth of a Cationic Polymer from the N-Terminus of Glucose Oxidase To Regulate H2O2 Generation for Cancer Starvation and H2O2 Therapy
    Hao, Hanjun
    Sun, Mengmeng
    Li, Pengyong
    Sun, Jiawei
    Liu, Xinyu
    Gao, Weiping
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9756 - 9762
  • [32] A heterostructured WO3-SnO2 nanocomposite for the efficient photocatalytic production of H2O2 under visible light
    Xie, Diya
    Chen, Chen
    Wang, Yaru
    Sun, Cheng
    Xu, Yiming
    Huang, Jianguo
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (19) : 11612 - 11624
  • [33] In Situ Mapping of H2, O2, and H2O2 in Microreactors: A Parallel, Selective Multianalyte Detection Method
    Urban, Sebastian
    Deschner, Benedikt J.
    Trinkies, Laura L.
    Kieninger, Jochen
    Kraut, Manfred
    Dittmeyer, Roland
    Urban, Gerald A.
    Weltin, Andreas
    ACS SENSORS, 2021, 6 (04) : 1583 - 1594
  • [34] Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2
    Lachheb, Hinda
    Guillar, Chantal
    Lassoued, Hayfa
    Haddaji, Marwa
    Rajah, Mariem
    Houas, Ammar
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2017, 346 : 462 - 469
  • [35] Controlled Delivery of H2O2: A Three-Enzyme Cascade Flow Reactor for Peroxidase-Catalyzed Reactions
    Arshi, Simin
    Madane, Ketan
    Shortall, Kim
    Hailo, Goran
    Alvarez-Malmagro, Julia
    Xiao, Xinxin
    Szymannska, Katarzyna
    Belochapkine, Serguei
    Ranade, Vivek V.
    Magner, Edmond
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, : 10555 - 10566
  • [36] Generation of Pd-O for Promoting Electrochemical H2O2 Production
    Du, Jiawei
    Jiang, Shuaihu
    Zhang, Ruya
    Wang, Pai
    Ma, Chao
    Zhao, Ruijuan
    Cui, Chunhua
    Zhang, Yanning
    Kang, Yijin
    ACS CATALYSIS, 2023, 13 (10): : 6887 - 6892
  • [37] Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria
    Hey-Mogensen, Martin
    Goncalves, Renata L. S.
    Orr, Adam L.
    Brand, Martin D.
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 72 : 149 - 155
  • [38] Custom-Design of Strong Electron/Proton Extractor on COFs for Efficient Photocatalytic H2O2 Production
    Li, Liyao
    Lv, Ximeng
    Xue, Yuanyuan
    Shao, Huibo
    Zheng, Gengfeng
    Han, Qing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (15)
  • [39] Exploring progress of strategies in enhancing the photoanodic production of H2O2: A comprehensive review
    Cai, Jiajia
    Zhang, Zhi
    Cui, Aobo
    Wang, Yuxuan
    Zhang, Yu
    Wang, Jianmin
    Xie, Qian
    MATERIALS TODAY ENERGY, 2025, 49
  • [40] Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters
    González-Dávila, M
    Santana-Casiano, JM
    Millero, FJ
    JOURNAL OF SOLUTION CHEMISTRY, 2006, 35 (01) : 95 - 111