Preconditioning CGNE iteration for inverse problems

被引:8
作者
Egger, H. [1 ]
机构
[1] Rhein Westfal TH Aachen, MATHCCES, Ctr Computat Engn Sci, D-52074 Aachen, Germany
关键词
conjugate gradients; preconditioning; inverse problems; regularization; Hilbert scales;
D O I
10.1002/nla.522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conjugate gradient method applied to the normal equations (CGNE) is known as efficient method for the solution of non-symmetric linear equations. By stopping the iteration according to a discrepancy principle, CGNE can be turned into a regularization method, and thus can be applied to the solution of inverse, in particular, ill-posed problems. We show that CGNE for inverse problems can be further accelerated by preconditioning in Hilbert scales, derive (optimal) convergence rates with respect to data noise, and give tight bounds on the iteration numbers. The theoretical results are illustrated by numerical tests. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:183 / 196
页数:14
相关论文
共 19 条
[1]   Semi-iterative regularization in Hilbert scales [J].
Egger, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :66-81
[2]   Preconditioning Landweber iteration in Hilbert scales [J].
Egger, H ;
Neubauer, A .
NUMERISCHE MATHEMATIK, 2005, 101 (04) :643-662
[3]  
EGGER H, 2006, 200607 SFB U LINZ
[4]  
Engl H., 1996, REGULARIZATION INVER
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[7]  
HANKE M, 1993, NUMERICAL LINEAR ALGEBRA, P141
[8]  
Hanke M., 1995, Conjugate gradient type methods for ill-posed problems
[9]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[10]   Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse-scattering problem [J].
Hohage, T .
INVERSE PROBLEMS, 1997, 13 (05) :1279-1299