SPECTRAL PROPERTIES OF ORDINARY DIFFERENTIAL OPERATORS ADMITTING SPECIAL DECOMPOSITIONS

被引:5
作者
Stempak, Krzysztof [1 ]
机构
[1] Wroclaw Univ Technol, Wydzial Matemat, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Self-adjoint operator; essentially self-adjoint operator; weak derivative; Sobolev space; Sturm-Liouville operator; Friedrichs extension; SOBOLEV SPACES; MAXIMAL OPERATORS; RIESZ TRANSFORMS; LAGUERRE;
D O I
10.3934/cpaa.2021054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate spectral properties of ordinary differential operators related to expressions of the form D-epsilon + a. Here a 2 R and D-epsilon denotes a composition of partial derivative and partial derivative(+) according to the signs in the multi-index epsilon, where d is a first order linear differential expression, called delta-derivative, and partial derivative(+) is its formal adjoint in an appropriate L-2 space. In particular, Sturm-Liouville operators that admit the decomposition of the type partial derivative(+)partial derivative + a are considered. We propose an approach, based on weak delta-derivatives and delta-Sobolev spaces, which is particularly useful in the study of the operators D-epsilon +a. Finally we examine a number of examples of operators, which are of the relevant form, naturally arising in analysis of classical orthogonal expansions.
引用
收藏
页码:1961 / 1986
页数:26
相关论文
共 27 条
[1]  
[Anonymous], 1986, Acta Math. Sin
[2]   Exotic multiplicity functions and heat maximal operators in certain Dunkl settings [J].
Arenas, Alberto ;
Labarga, Edgar ;
Nowak, Adam .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (10) :771-793
[3]   Hilbert transform and related topics associated with the differential Jacobi operator on (0, +a) [J].
Ben Salem, Nejib ;
Samaali, Taha .
POSITIVITY, 2011, 15 (02) :221-240
[4]   On Hankel conjugate functions [J].
Betancor, JJ ;
Stempak, K .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (01) :59-91
[5]   Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform [J].
Betancor, JJ ;
Stempak, K .
TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) :109-129
[6]   A CHOICE OF SOBOLEV SPACES ASSOCIATED WITH ULTRASPHERICAL EXPANSIONS [J].
Betancor, Jorge J. ;
Farina, Juan C. ;
Rodriguez-Mesa, Lourdes ;
Testoni, Ricardo ;
Torrea, Jose L. .
PUBLICACIONS MATEMATIQUES, 2010, 54 (01) :221-242
[7]   Sobolev spaces associated to the harmonic oscillator [J].
Bongioanni, B. ;
Torrea, J. L. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03) :337-360
[8]   What is a Sobolev space for the Laguerre function systems? [J].
Bongioanni, B. ;
Torrea, J. L. .
STUDIA MATHEMATICA, 2009, 192 (02) :147-172
[9]  
Davies E. B., 1994, SPECTRAL THEORY DIFF
[10]  
Everitt W. N., 2005, STURM LIOUVILLE THEO, P675