Strong equality of domination parameters in trees

被引:20
作者
Haynes, TW
Henning, MA
Slater, PJ
机构
[1] Univ Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[2] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[3] Univ Alabama, Huntsville, AL 35899 USA
关键词
domination number; independent domination number; strong equality; total domination number;
D O I
10.1016/S0012-365X(02)00451-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the concept of strong equality of domination parameters. Let P-1 and P-2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P2 also has property P-1. Let psi(1)(G) and psi(2)(G), respectively, denote the minimum cardinalities of sets with properties P-1 and P-2, respectively. Then psi(1)(G) less than or equal to psi(2)(G). If psi(1)(G) = psi(2)(G) and every psi(1)(G)-set is also psi(2)(G)-set, then we say psi(1)(G) strongly equals psi(2)(G), written psi(1)(G) equivalent to psi(2)(G). We provide a constructive characterization of the trees T such that gamma(T) equivalent to i(T), where y(T) and i(T) are the domination and independent domination numbers, respectively. A constructive characterization of the trees T for which y(T) = y(t)(T), where y(t)(T) denotes the total domination number of T, is also presented. (C) 2002 Elsevier Science B.V, All fights reserved.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 6 条
[1]   DOMINATION ALTERATION SETS IN GRAPHS [J].
BAUER, D ;
HARARY, F ;
NIEMINEN, J ;
SUFFEL, CL .
DISCRETE MATHEMATICS, 1983, 47 (2-3) :153-161
[2]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[3]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[4]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[5]  
Haynes TW, 1998, NETWORKS, V32, P199, DOI 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO
[6]  
2-F