Decomposition of laser altimeter waveforms

被引:295
作者
Hofton, MA [1 ]
Minster, JB
Blair, JB
机构
[1] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Inst Geophys & Planetary Phys, La Jolla, CA 92093 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2000年 / 38卷 / 04期
基金
美国国家航空航天局;
关键词
data processing; Gaussian decomposition; laser altimetry; surface-finding;
D O I
10.1109/36.851780
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We develop a method to decompose a laser altimeter return waveform into a series of components assuming that the position of each component within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. For simplicity, we assume each component is Gaussian in nature. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points, Initial amplitude estimates are obtained using a nonnegative least-squares method (LSM), To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method, If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians can be included in the optimization procedure or initial parameters can be recalculated. The Gaussian decomposition method is demonstrated on data collected by the airborne laser vegetation imaging sensor (LVIS) in October 1997 over the Sequoia National Forest, California.
引用
收藏
页码:1989 / 1996
页数:8
相关论文
共 12 条
[1]   The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography [J].
Blair, JB ;
Rabine, DL ;
Hofton, MA .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) :115-122
[2]  
COHEN S, 1987, IEEE T GEOSCI REM GE, V25, P249
[3]  
Dubayah R., 1997, LAND SATELLITE INFOR, P100
[4]  
Garvin J., 1998, PHYS CHEM EARTH, V23, P1053, DOI [10.1016/S0079-1946(98)00145-1, DOI 10.1016/S0079-1946(98)00145-1]
[5]   An airborne scanning laser altimetry survey of Long Valley, California [J].
Hofton, MA ;
Blair, JB ;
Minster, JB ;
Ridgway, JR ;
Williams, NP ;
Bufton, JL ;
Rabine, DL .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (12) :2413-2437
[6]  
HOFTON MA, 2000, UNION MONOGRAPH REMO
[7]  
KAULA WM, 1974, GEOCHIM COSM SUPPL, V38, P3049
[8]  
Lawson C.L., 1974, SOLVING LEAST SQUARE, P340
[9]  
MARKWARDT C, 1998, CURVE FITTING IDL MP
[10]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441