Distributed simultaneous state and parameter estimation of nonlinear systems

被引:6
作者
Liu, Siyu [1 ,2 ]
Yin, Xunyuan [3 ]
Liu, Jianbang [4 ]
Liu, Jinfeng [2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[4] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Subsystem decomposition; Sensitivity analysis; Community structure detection; Distributed estimation; Nonlinear process; INTEGRATED PROCESS; DECOMPOSITION; IDENTIFIABILITY; COMMUNICATION; ALGORITHM;
D O I
10.1016/j.cherd.2022.02.027
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, we consider distributed simultaneous state and parameter estimation for a class of nonlinear systems, for which the augmented model comprising both the states and the parameters is only partially observable. Specifically, we first illustrate how the sensitivity analysis (SA) can select variables for simultaneous state and parameter estimation. Then, a community structure detection (CSD) based process decomposition method is proposed for dividing the entire system into interconnected subsystems as the basis of distributed estimation. Next, we develop local moving horizon estimators based on the configured subsystem models, and the local estimators communicate with each other to exchange their estimates. Finally, an SA and CSD based distributed moving horizon estimation (DMHE) mechanism is proposed. The effectiveness of the proposed approach is illustrated using a chemical process consisting of four connected reactors. (c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 40 条
  • [1] Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    [J]. AUTOMATICA, 2008, 44 (07) : 1753 - 1765
  • [2] Distributed Moving-Horizon Estimation With Arrival-Cost Consensus
    Battistelli, Giorgio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (08) : 3316 - 3323
  • [3] Nonlinear joint state and parameter estimation: Application to a wastewater treatment plant
    Bezzaoucha, S.
    Marx, B.
    Maquin, D.
    Ragot, J.
    [J]. CONTROL ENGINEERING PRACTICE, 2013, 21 (10) : 1377 - 1385
  • [4] Fast unfolding of communities in large networks
    Blondel, Vincent D.
    Guillaume, Jean-Loup
    Lambiotte, Renaud
    Lefebvre, Etienne
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [5] State estimation for large-scale wastewater treatment plants
    Busch, Jan
    Elixmann, David
    Kuehl, Peter
    Gerkens, Carine
    Schloeder, Johannes P.
    Bock, Hans G.
    Marquardt, Wolfgang
    [J]. WATER RESEARCH, 2013, 47 (13) : 4774 - 4787
  • [6] Generalization of a parameter set selection procedure based on orthogonal projections and the D-optimality criterion
    Chu, Yunfei
    Hahn, Juergen
    [J]. AICHE JOURNAL, 2012, 58 (07) : 2085 - 2096
  • [7] Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
  • [8] Sensitivity analysis for the reduction of complex metabolism models
    Degenring, D
    Froemel, C
    Dikta, G
    Takors, R
    [J]. JOURNAL OF PROCESS CONTROL, 2004, 14 (07) : 729 - 745
  • [9] Moving-horizon partition-based state estimation of large-scale systems
    Farina, Marcello
    Ferrari-Trecate, Giancarlo
    Scattolini, Riccardo
    [J]. AUTOMATICA, 2010, 46 (05) : 910 - 918
  • [10] Community detection in graphs
    Fortunato, Santo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5): : 75 - 174